ammarnasr commited on
Commit
f51a0ca
1 Parent(s): c4d82d4

Upload config

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +36 -0
  3. configuration_t5mimoconv.py +152 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "T5MIMOconvModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_t5mimoconv.T5MIMOconvConfig",
7
+ "AutoModel": "modeling_t5mimoconv.T5MIMOconvModel",
8
+ "AutoModelForSeq2SeqLM": "modeling_t5mimoconv.T5MIMOconvForConditionalGeneration"
9
+ },
10
+ "classifier_dropout": 0.0,
11
+ "d_ff": 1024,
12
+ "d_kv": 64,
13
+ "d_model": 256,
14
+ "decoder_start_token_id": 0,
15
+ "dense_act_fn": "relu",
16
+ "dropout_rate": 0.1,
17
+ "eos_token_id": 1,
18
+ "feed_forward_proj": "relu",
19
+ "initializer_factor": 0.05,
20
+ "is_encoder_decoder": true,
21
+ "is_gated_act": false,
22
+ "layer_norm_epsilon": 1e-06,
23
+ "model_type": "t5mimoconv",
24
+ "num_decoder_layers": 4,
25
+ "num_filters": 64,
26
+ "num_heads": 4,
27
+ "num_layers": 4,
28
+ "num_seqs": 3,
29
+ "pad_token_id": 0,
30
+ "relative_attention_max_distance": 128,
31
+ "relative_attention_num_buckets": 32,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.41.1",
34
+ "use_cache": true,
35
+ "vocab_size": 4096
36
+ }
configuration_t5mimoconv.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Mapping
2
+ from transformers.configuration_utils import PretrainedConfig
3
+ from transformers.onnx import OnnxSeq2SeqConfigWithPast
4
+ from transformers.utils import logging
5
+
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class T5MIMOconvConfig(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to
13
+ instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a
14
+ configuration with the defaults will yield a similar configuration to that of the T5
15
+ [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture.
16
+
17
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
18
+ documentation from [`PretrainedConfig`] for more information.
19
+
20
+ Arguments:
21
+ vocab_size (`int`, *optional*, defaults to 32128):
22
+ Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
23
+ `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
24
+ d_model (`int`, *optional*, defaults to 512):
25
+ Size of the encoder layers and the pooler layer.
26
+ d_kv (`int`, *optional*, defaults to 64):
27
+ Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
28
+ be defined as `num_heads * d_kv`.
29
+ d_ff (`int`, *optional*, defaults to 2048):
30
+ Size of the intermediate feed forward layer in each `T5Block`.
31
+ num_layers (`int`, *optional*, defaults to 6):
32
+ Number of hidden layers in the Transformer encoder.
33
+ num_decoder_layers (`int`, *optional*):
34
+ Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
35
+ num_heads (`int`, *optional*, defaults to 8):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ relative_attention_num_buckets (`int`, *optional*, defaults to 32):
38
+ The number of buckets to use for each attention layer.
39
+ relative_attention_max_distance (`int`, *optional*, defaults to 128):
40
+ The maximum distance of the longer sequences for the bucket separation.
41
+ dropout_rate (`float`, *optional*, defaults to 0.1):
42
+ The ratio for all dropout layers.
43
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
44
+ The dropout ratio for classifier.
45
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
46
+ The epsilon used by the layer normalization layers.
47
+ initializer_factor (`float`, *optional*, defaults to 1):
48
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
49
+ testing).
50
+ feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
51
+ Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the
52
+ `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`.
53
+ use_cache (`bool`, *optional*, defaults to `True`):
54
+ Whether or not the model should return the last key/values attentions (not used by all models).
55
+ """
56
+
57
+ model_type = "t5mimoconv"
58
+ keys_to_ignore_at_inference = ["past_key_values"]
59
+ attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
60
+
61
+ def __init__(
62
+ self,
63
+ vocab_size=32128,
64
+ d_model=512,
65
+ d_kv=64,
66
+ d_ff=2048,
67
+ num_layers=6,
68
+ num_decoder_layers=None,
69
+ num_heads=8,
70
+ relative_attention_num_buckets=32,
71
+ relative_attention_max_distance=128,
72
+ dropout_rate=0.1,
73
+ layer_norm_epsilon=1e-6,
74
+ initializer_factor=1.0,
75
+ feed_forward_proj="relu",
76
+ is_encoder_decoder=True,
77
+ use_cache=True,
78
+ pad_token_id=0,
79
+ eos_token_id=1,
80
+ decoder_start_token_id = 0,
81
+ classifier_dropout=0.0,
82
+ num_seqs=3,
83
+ num_filters=64,
84
+ **kwargs,
85
+ ):
86
+ self.vocab_size = vocab_size
87
+ self.d_model = d_model
88
+ self.d_kv = d_kv
89
+ self.d_ff = d_ff
90
+ self.num_layers = num_layers
91
+ self.num_decoder_layers = (
92
+ num_decoder_layers if num_decoder_layers is not None else self.num_layers
93
+ ) # default = symmetry
94
+ self.num_heads = num_heads
95
+ self.relative_attention_num_buckets = relative_attention_num_buckets
96
+ self.relative_attention_max_distance = relative_attention_max_distance
97
+ self.dropout_rate = dropout_rate
98
+ self.classifier_dropout = classifier_dropout
99
+ self.layer_norm_epsilon = layer_norm_epsilon
100
+ self.initializer_factor = initializer_factor
101
+ self.feed_forward_proj = feed_forward_proj
102
+ self.use_cache = use_cache
103
+ self.num_seqs = num_seqs
104
+ self.num_filters = num_filters
105
+
106
+ act_info = self.feed_forward_proj.split("-")
107
+ self.dense_act_fn = act_info[-1]
108
+ self.is_gated_act = act_info[0] == "gated"
109
+
110
+ if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
111
+ raise ValueError(
112
+ f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
113
+ "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
114
+ "'gated-gelu' or 'relu'"
115
+ )
116
+
117
+ # for backwards compatibility
118
+ if feed_forward_proj == "gated-gelu":
119
+ self.dense_act_fn = "gelu_new"
120
+
121
+ super().__init__(
122
+ pad_token_id=pad_token_id,
123
+ eos_token_id=eos_token_id,
124
+ decoder_start_token_id=decoder_start_token_id,
125
+ is_encoder_decoder=is_encoder_decoder,
126
+ **kwargs,
127
+ )
128
+
129
+
130
+ class T5MIMOOnnxConfig(OnnxSeq2SeqConfigWithPast):
131
+ @property
132
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
133
+ common_inputs = {
134
+ "input_ids": {0: "batch", 1: "encoder_sequence"},
135
+ "attention_mask": {0: "batch", 1: "encoder_sequence"},
136
+ }
137
+ if self.use_past:
138
+ common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
139
+ common_inputs["decoder_input_ids"] = {0: "batch"}
140
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
141
+ else:
142
+ common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
143
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
144
+
145
+ if self.use_past:
146
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
147
+
148
+ return common_inputs
149
+
150
+ @property
151
+ def default_onnx_opset(self) -> int:
152
+ return 13