MedTS-4-base / modeling_medts.py
ammarnasr's picture
Upload model
a2364f4 verified
raw
history blame
6.2 kB
from transformers import PreTrainedModel
import torch
import torch.nn as nn
from torch.nn import functional as F
from .configuration_medts import MedTSConfig
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size, n_embd, block_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B,T,C = x.shape
k = self.key(x) # (B,T,hs)
q = self.query(x) # (B,T,hs)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,hs)
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size, n_embd, dropout, block_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, n_embd, block_size) for _ in range(num_heads)])
self.proj = nn.Linear(head_size * num_heads, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head, dropout, block_size):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout, block_size)
self.ffwd = FeedFoward(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class PatientsTimeSeriesModel(nn.Module):
def __init__(self, vocab_size, n_embd, block_size, device, n_layer, n_head, dropout):
'''
args:
- vocab_size: int, the number of unique tokens in the vocabulary, i.e. the number of unique tests results
- n_embd: int, the dimension of the embedding, i.e. the number of tests results (same as vocab_size)
- block_size: int, the length of the context
'''
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.position_embedding_table = nn.Embedding(block_size, vocab_size)
# self.sa =Head(n_embd, n_embd, block_size)
self.blocks = nn.Sequential(*[Block(n_embd, n_head, dropout, block_size) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_prefix = nn.Linear(vocab_size, n_embd) # linear layer to project the tokens to the embedding dimension
self.lm_head = nn.Linear(n_embd, vocab_size) # linear layer to project the embeddings to the vocabulary size
self.device = device
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, tok_emb, targets=None):
# tok_emb and targets are both (B,T,C) tensors
# where B is the batch size, T is the number of time steps and C is the number of tests results
B, T, C = tok_emb.shape
pos_emb = self.position_embedding_table(torch.arange(T, device=self.device)) # (T,Vocab_size)
x = tok_emb + pos_emb # (B,T,Vocab_size)
x = self.lm_prefix(x) # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
return {"logits": logits}
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T, C)
# TODO: Add padding mask to the loss computation
# loss = F.mse_loss(logits, targets)
loss = self.mse_loss(logits, targets, reduction="mean")
return {"logits": logits, "loss": loss}
def mse_loss(self, out, target, reduction):
mask = (target == 0)
loss = (out[~mask]-target[~mask])**2
if reduction == "mean":
return loss.mean()
elif reduction == "None":
return loss
class MedTSModel(PreTrainedModel):
config_class = MedTSConfig
def __init__(self, config):
super().__init__(config)
self.model = PatientsTimeSeriesModel(
vocab_size=config.vocab_size,
n_embd=config.n_embd,
block_size=config.block_size,
device= 'mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu',
n_layer=config.n_layer,
n_head=config.n_head,
dropout=config.dropout
)
def forward(self, tensor, targets=None):
return self.model(tensor, targets)