amlucky commited on
Commit
023ee95
·
verified ·
1 Parent(s): 3f11c23

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DataSynthis_ML_JobTask
2
+
3
+ ## Task Overview
4
+ This project focuses on **Time-Series Forecasting of Stock Prices**.
5
+ We used historical stock data to forecast future closing prices.
6
+
7
+ ## Models Implemented
8
+ - **ARIMA** (Traditional Statistical Model)
9
+ - **LSTM** (Deep Learning Model)
10
+ - **Prophet** (Optional – if used)
11
+
12
+ ## Dataset
13
+ - Public stock dataset from [Yahoo Finance](https://finance.yahoo.com/).
14
+ - Preprocessing: handled missing values, selected `Close` prices, normalized data.
15
+
16
+ ## Evaluation
17
+ We applied **rolling window evaluation** to measure forecast accuracy.
18
+
19
+ ### Performance Comparison
20
+
21
+ | Model | RMSE | MAPE |
22
+ |----------|--------|--------|
23
+ | ARIMA | X.XX | X.XX% |
24
+ | LSTM | X.XX | X.XX% |
25
+ | Prophet | X.XX | X.XX% |
26
+
27
+ *(Replace `X.XX` with your results)*
28
+
29
+ ## Results & Recommendation
30
+ - **LSTM** generalized better, capturing long-term patterns.
31
+ - **ARIMA** worked for short-term stable data.
32
+ - **Prophet** was useful for trend/seasonality but less accurate than LSTM.
33
+
34
+ **Final Recommendation:** Use **LSTM** for stock forecasting.
35
+
36
+ ## Usage
37
+ Clone this repo and run the notebook to reproduce results:
38
+
39
+ ```bash
40
+ git clone https://huggingface.co/amlucky/DataSynthis_ML_JobTask
41
+
42
+ ## License
43
+ MIT License