Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.19 +/- 20.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f72497d0430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f72497d04c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f72497d0550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f72497d05e0>", "_build": "<function ActorCriticPolicy._build at 0x7f72497d0670>", "forward": "<function ActorCriticPolicy.forward at 0x7f72497d0700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f72497d0790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f72497d0820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f72497d08b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f72497d0940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f72497d09d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f72497c98a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672032644137107157, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBEGD3MGoE+OhPEPUEeQL4s/uc8rojZvAAAAAAAAAAA4O/ZPjWtXD//LMg9xJn0vrJwoj74d+S9AAAAAAAAAAAADY494Y2tP22aYz47nNi+S1ecPSZl9j0AAAAAAAAAAAArjTz2+Fc54wxqPEkEXbxC8sE6vRdhPAAAAAAAAAAAM6AiPVjX5z7ae6C8bHeRvhm+VbzlkZi8AAAAAAAAAAAz8yK+8AxhP+NAND5G5ri+1hE+vTR2nz0AAAAAAAAAABqG9b01wOE+sQqYPQz6mb5tnzW9itlvvQAAAAAAAAAAmuihvNQOXD5WqEo+lySYvgeVvj25FSS8AAAAAAAAAADzaMg9eFy1PnZfpbuVcaK+7r9kPcqDSb0AAAAAAAAAAGASLD4I0js/jmCRPaXTzr4IoPE9KjzvvAAAAAAAAAAAQ/Nqvt7Tpj/OBgS/suvUvvBOpb76lYS+AAAAAAAAAACz/ss9SZ6FP248ET5rVdu+HYcNPi06xLsAAAAAAAAAAKWCqb4OhhY/W19fPmWtZr4WYAO+UsjmPAAAAAAAAAAAM89gPLxkoD8hKwM+PigAv7ZPRjv/IYY8AAAAAAAAAAAAoGq8LvGTvMLlVj2EfH697QnBveLqrb4AAIA/AACAPyCGWT49zgG915iROwXRRrqGh2e+28zfugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2bERiBfNcUCUhpRSlIwBbJRNGQGMAXSUR0CRj+o3rD64dX2UKGgGaAloD0MIZ/LNNjfFcUCUhpRSlGgVTSUBaBZHQJGRG9Jz1bt1fZQoaAZoCWgPQwjBjClY40RyQJSGlFKUaBVNFgFoFkdAkZIF5v99+nV9lChoBmgJaA9DCBjRdkwdoXFAlIaUUpRoFU0IAWgWR0CRkqrs0HhTdX2UKGgGaAloD0MIlWHcDSJlbkCUhpRSlGgVTRkBaBZHQJGUBVZLZjB1fZQoaAZoCWgPQwg34PPDCDBwQJSGlFKUaBVNGQFoFkdAkZR5SFXaJ3V9lChoBmgJaA9DCPsioS1n4nBAlIaUUpRoFU0NAWgWR0CRlNgQHzH0dX2UKGgGaAloD0MIEAh0Jm1ATkCUhpRSlGgVS9NoFkdAkZUGFN+LFXV9lChoBmgJaA9DCH9rJ0pC1HFAlIaUUpRoFU0fAWgWR0CRlZC3PRiPdX2UKGgGaAloD0MIs2Dij+KcckCUhpRSlGgVTQgBaBZHQJGXCk8A7xN1fZQoaAZoCWgPQwi5GAPr+GNyQJSGlFKUaBVNaAFoFkdAkZc/DpC8e3V9lChoBmgJaA9DCLh0zHnGwXFAlIaUUpRoFU0YAWgWR0CRl2h9b5dodX2UKGgGaAloD0MIns+AerNZb0CUhpRSlGgVTSABaBZHQJGX60TlDF91fZQoaAZoCWgPQwifdvhrstdvQJSGlFKUaBVNDgFoFkdAkZf6lLvkR3V9lChoBmgJaA9DCISDvYnhw3FAlIaUUpRoFU05AWgWR0CRmHMr3CbddX2UKGgGaAloD0MIZD21+uotUkCUhpRSlGgVS9xoFkdAkZmChi9ZinV9lChoBmgJaA9DCGWKOQh6JHBAlIaUUpRoFUv2aBZHQJGZlZX+2mZ1fZQoaAZoCWgPQwhWKqio+jhxQJSGlFKUaBVNcAFoFkdAkZoxDLKV6nV9lChoBmgJaA9DCIVefxIfRXFAlIaUUpRoFU0yAWgWR0CRmmdxAB1cdX2UKGgGaAloD0MICKuxhDVTcECUhpRSlGgVTSkBaBZHQJGdU9IPK+11fZQoaAZoCWgPQwgArmTHRoxjQJSGlFKUaBVN6ANoFkdAkZ3zFMqSYHV9lChoBmgJaA9DCMx9chSgUG9AlIaUUpRoFU0mAWgWR0CRnjXhfjS5dX2UKGgGaAloD0MIpABRMCPXcUCUhpRSlGgVTS4BaBZHQJGeSBun/DN1fZQoaAZoCWgPQwj0GOWZ1+JxQJSGlFKUaBVNSAFoFkdAkZ660+kgwHV9lChoBmgJaA9DCLtgcM3df3BAlIaUUpRoFU0QAWgWR0CRn71RtP56dX2UKGgGaAloD0MIL8IU5VJLcUCUhpRSlGgVTSMBaBZHQJGf+e2/i5x1fZQoaAZoCWgPQwiw5ZXr7fhvQJSGlFKUaBVNHwFoFkdAkaCraZhKDnV9lChoBmgJaA9DCKtbPSd9rXFAlIaUUpRoFU0dAWgWR0CRoKtEXtSidX2UKGgGaAloD0MIYyZRLzgKckCUhpRSlGgVTT0BaBZHQJGg7vVmSQp1fZQoaAZoCWgPQwj5n/zdO/9wQJSGlFKUaBVNCQFoFkdAkaGaABkqc3V9lChoBmgJaA9DCLXFNT4TTXBAlIaUUpRoFU0JAWgWR0CRojbkwN9ZdX2UKGgGaAloD0MI88zLYfeWckCUhpRSlGgVTR0BaBZHQJGiOGEf1Yh1fZQoaAZoCWgPQwgxsmSOJYtyQJSGlFKUaBVNowFoFkdAkaJP7el9B3V9lChoBmgJaA9DCM8wtaWOZXBAlIaUUpRoFU0LAWgWR0CRonSaVlf7dX2UKGgGaAloD0MIkgciizSsb0CUhpRSlGgVTWsBaBZHQJGjJWLgn+h1fZQoaAZoCWgPQwiU+UffpCVyQJSGlFKUaBVL92gWR0CRpLqd6LOzdX2UKGgGaAloD0MI6NztemlEcECUhpRSlGgVTR8BaBZHQJGlZ7mdRSB1fZQoaAZoCWgPQwiu2F92z6RxQJSGlFKUaBVNGwFoFkdAkaYUEgW8AnV9lChoBmgJaA9DCGSw4lTrKm9AlIaUUpRoFU0TAWgWR0CRpmKHfuTidX2UKGgGaAloD0MIETroEo62cECUhpRSlGgVTSoBaBZHQJGmlcLSeAd1fZQoaAZoCWgPQwgfEOhMmrtwQJSGlFKUaBVL8GgWR0CRp2/nW8RMdX2UKGgGaAloD0MINQpJZnVFcUCUhpRSlGgVTS8BaBZHQJGoLqyGBWh1fZQoaAZoCWgPQwhVM2spIB1JQJSGlFKUaBVL3WgWR0CRqFKCg9NfdX2UKGgGaAloD0MI+u5Wluixb0CUhpRSlGgVTRcBaBZHQJGoYF/x2B91fZQoaAZoCWgPQwhyameYGp5xQJSGlFKUaBVNIwFoFkdAkbvsbNr0rnV9lChoBmgJaA9DCNQrZRlixW5AlIaUUpRoFU1DAWgWR0CRvClsP8Q7dX2UKGgGaAloD0MICd/7G7S9ckCUhpRSlGgVS/ZoFkdAkbxuyVv/BHV9lChoBmgJaA9DCErP9BJjeW5AlIaUUpRoFU0IAWgWR0CRvKeZ5Rj0dX2UKGgGaAloD0MIy9jQzX5Bb0CUhpRSlGgVTS8BaBZHQJG9vRKHwgF1fZQoaAZoCWgPQwiQL6GCQzpxQJSGlFKUaBVNDQFoFkdAkb3GAwwj+3V9lChoBmgJaA9DCA9gkV8/IHFAlIaUUpRoFU1pAWgWR0CRvoMPjGT+dX2UKGgGaAloD0MIc6CH2rbpckCUhpRSlGgVTRYBaBZHQJHATduYQat1fZQoaAZoCWgPQwgYXd4croZxQJSGlFKUaBVNNAFoFkdAkcCX5rP+oHV9lChoBmgJaA9DCOiFOxdGznBAlIaUUpRoFU0KAWgWR0CRwTxIatLddX2UKGgGaAloD0MIsd09QLcJckCUhpRSlGgVTSgBaBZHQJHBry5I6Kd1fZQoaAZoCWgPQwjc9dIUQblxQJSGlFKUaBVL+2gWR0CRwseOGTLXdX2UKGgGaAloD0MIrP4Iw8A9cECUhpRSlGgVTQQBaBZHQJHDJwQ176Z1fZQoaAZoCWgPQwi+h0uOOy9wQJSGlFKUaBVNDAFoFkdAkcMxqTKT0XV9lChoBmgJaA9DCLQ9esM9EHJAlIaUUpRoFU0wAWgWR0CRw5cjqv/zdX2UKGgGaAloD0MIE+6VeSuYcUCUhpRSlGgVS/1oFkdAkcPnt4RmLHV9lChoBmgJaA9DCJ0OZD21Z21AlIaUUpRoFU0WAWgWR0CRxEkTpPhydX2UKGgGaAloD0MIob/QI0brbkCUhpRSlGgVTSQBaBZHQJHEbCcf/3p1fZQoaAZoCWgPQwgPZD21+mZwQJSGlFKUaBVNJQFoFkdAkcUrs4T9KnV9lChoBmgJaA9DCHedDfnnSXFAlIaUUpRoFU0EAWgWR0CRxW2OQyRCdX2UKGgGaAloD0MI4ZUkz/WZb0CUhpRSlGgVTaMBaBZHQJHFjuYx+KF1fZQoaAZoCWgPQwj9vn/zIgpxQJSGlFKUaBVL/2gWR0CRxg6lchTwdX2UKGgGaAloD0MIuvWaHhTLcUCUhpRSlGgVTSIBaBZHQJHGI5tFa0R1fZQoaAZoCWgPQwiMuWsJOVtwQJSGlFKUaBVL+WgWR0CRyGgJkXk6dX2UKGgGaAloD0MIWYgOgaNvcECUhpRSlGgVTR0BaBZHQJHI6xVyWAx1fZQoaAZoCWgPQwjJBPwaSS1vQJSGlFKUaBVNEwFoFkdAkcmeiFj/dnV9lChoBmgJaA9DCNF5jV2ie3BAlIaUUpRoFU1FAWgWR0CRye052hZhdX2UKGgGaAloD0MI7PoFuyH8cUCUhpRSlGgVS/doFkdAkcoRqbjLjnV9lChoBmgJaA9DCHSV7q7zr3FAlIaUUpRoFU0WAWgWR0CRyqGPxQSBdX2UKGgGaAloD0MInnx6bMv/b0CUhpRSlGgVTRoBaBZHQJHLDSVnmJZ1fZQoaAZoCWgPQwj19XzNsrtzQJSGlFKUaBVL/WgWR0CRy2d69kBkdX2UKGgGaAloD0MIgehJmVQab0CUhpRSlGgVTR4BaBZHQJHLx2eQMhJ1fZQoaAZoCWgPQwgD6zh+qDFyQJSGlFKUaBVNOgFoFkdAkcxAk1Mue3V9lChoBmgJaA9DCP5D+u1ryG1AlIaUUpRoFU0LAWgWR0CRzOe9i+cpdX2UKGgGaAloD0MIomDGFCwecECUhpRSlGgVTTIBaBZHQJHORKTSssB1fZQoaAZoCWgPQwi+nxovnYFxQJSGlFKUaBVNJAFoFkdAkc6SO/+Kj3V9lChoBmgJaA9DCEZ8J2Y9rG9AlIaUUpRoFU08AWgWR0CRzzRRdhRZdX2UKGgGaAloD0MImntI+N6zckCUhpRSlGgVS/5oFkdAkc/MCo0hvHV9lChoBmgJaA9DCEmD29rC6HFAlIaUUpRoFUvvaBZHQJHQhjTa0yB1fZQoaAZoCWgPQwjfpGlQtLRxQJSGlFKUaBVNNAFoFkdAkdIgJ1JUYXV9lChoBmgJaA9DCFzHuOLiM25AlIaUUpRoFU0VAWgWR0CR0ioEjgQ6dX2UKGgGaAloD0MImfT3UjhKcUCUhpRSlGgVTQQBaBZHQJHScNkOI691fZQoaAZoCWgPQwgg0QSKGDVwQJSGlFKUaBVNPgFoFkdAkdPG912aD3V9lChoBmgJaA9DCDy+vWvQO3BAlIaUUpRoFU0iAWgWR0CR1SByCFsYdX2UKGgGaAloD0MI+mGE8OgzbkCUhpRSlGgVTTwBaBZHQJHVjyc0+C91fZQoaAZoCWgPQwi29dN/VtJyQJSGlFKUaBVNSwFoFkdAkdWZMpPRA3V9lChoBmgJaA9DCF8pyxBHhHBAlIaUUpRoFU0ZAWgWR0CR1jeu3c59dX2UKGgGaAloD0MI/vFetXJbcECUhpRSlGgVTUEBaBZHQJHWr3i704B1fZQoaAZoCWgPQwhoImx4uhhzQJSGlFKUaBVL/2gWR0CR1wJDmbLEdX2UKGgGaAloD0MI492RsRqEcUCUhpRSlGgVTVwCaBZHQJHXf+98JD51fZQoaAZoCWgPQwjKwtfXuhVvQJSGlFKUaBVL+GgWR0CR1/7EYO2BdX2UKGgGaAloD0MI10//WXOybUCUhpRSlGgVTQ4BaBZHQJHYC/0ulGh1fZQoaAZoCWgPQwjf+UUJepJuQJSGlFKUaBVNSAFoFkdAkdjFTzd1uHV9lChoBmgJaA9DCGkCRSzi3HJAlIaUUpRoFU0FAWgWR0CR2QDEWIoFdX2UKGgGaAloD0MIjBAebdx4c0CUhpRSlGgVS+NoFkdAkdlabz9S/HV9lChoBmgJaA9DCPHxCdn5KG9AlIaUUpRoFUvxaBZHQJHZsZBLPD51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8097d1b3ce34719e42ff5db106060117bb532fae43eab361ce7a2e595e071018
|
3 |
+
size 147194
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f72497d0430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f72497d04c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f72497d0550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f72497d05e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f72497d0670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f72497d0700>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f72497d0790>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f72497d0820>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f72497d08b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f72497d0940>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f72497d09d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f72497c98a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672032644137107157,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBEGD3MGoE+OhPEPUEeQL4s/uc8rojZvAAAAAAAAAAA4O/ZPjWtXD//LMg9xJn0vrJwoj74d+S9AAAAAAAAAAAADY494Y2tP22aYz47nNi+S1ecPSZl9j0AAAAAAAAAAAArjTz2+Fc54wxqPEkEXbxC8sE6vRdhPAAAAAAAAAAAM6AiPVjX5z7ae6C8bHeRvhm+VbzlkZi8AAAAAAAAAAAz8yK+8AxhP+NAND5G5ri+1hE+vTR2nz0AAAAAAAAAABqG9b01wOE+sQqYPQz6mb5tnzW9itlvvQAAAAAAAAAAmuihvNQOXD5WqEo+lySYvgeVvj25FSS8AAAAAAAAAADzaMg9eFy1PnZfpbuVcaK+7r9kPcqDSb0AAAAAAAAAAGASLD4I0js/jmCRPaXTzr4IoPE9KjzvvAAAAAAAAAAAQ/Nqvt7Tpj/OBgS/suvUvvBOpb76lYS+AAAAAAAAAACz/ss9SZ6FP248ET5rVdu+HYcNPi06xLsAAAAAAAAAAKWCqb4OhhY/W19fPmWtZr4WYAO+UsjmPAAAAAAAAAAAM89gPLxkoD8hKwM+PigAv7ZPRjv/IYY8AAAAAAAAAAAAoGq8LvGTvMLlVj2EfH697QnBveLqrb4AAIA/AACAPyCGWT49zgG915iROwXRRrqGh2e+28zfugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2bERiBfNcUCUhpRSlIwBbJRNGQGMAXSUR0CRj+o3rD64dX2UKGgGaAloD0MIZ/LNNjfFcUCUhpRSlGgVTSUBaBZHQJGRG9Jz1bt1fZQoaAZoCWgPQwjBjClY40RyQJSGlFKUaBVNFgFoFkdAkZIF5v99+nV9lChoBmgJaA9DCBjRdkwdoXFAlIaUUpRoFU0IAWgWR0CRkqrs0HhTdX2UKGgGaAloD0MIlWHcDSJlbkCUhpRSlGgVTRkBaBZHQJGUBVZLZjB1fZQoaAZoCWgPQwg34PPDCDBwQJSGlFKUaBVNGQFoFkdAkZR5SFXaJ3V9lChoBmgJaA9DCPsioS1n4nBAlIaUUpRoFU0NAWgWR0CRlNgQHzH0dX2UKGgGaAloD0MIEAh0Jm1ATkCUhpRSlGgVS9NoFkdAkZUGFN+LFXV9lChoBmgJaA9DCH9rJ0pC1HFAlIaUUpRoFU0fAWgWR0CRlZC3PRiPdX2UKGgGaAloD0MIs2Dij+KcckCUhpRSlGgVTQgBaBZHQJGXCk8A7xN1fZQoaAZoCWgPQwi5GAPr+GNyQJSGlFKUaBVNaAFoFkdAkZc/DpC8e3V9lChoBmgJaA9DCLh0zHnGwXFAlIaUUpRoFU0YAWgWR0CRl2h9b5dodX2UKGgGaAloD0MIns+AerNZb0CUhpRSlGgVTSABaBZHQJGX60TlDF91fZQoaAZoCWgPQwifdvhrstdvQJSGlFKUaBVNDgFoFkdAkZf6lLvkR3V9lChoBmgJaA9DCISDvYnhw3FAlIaUUpRoFU05AWgWR0CRmHMr3CbddX2UKGgGaAloD0MIZD21+uotUkCUhpRSlGgVS9xoFkdAkZmChi9ZinV9lChoBmgJaA9DCGWKOQh6JHBAlIaUUpRoFUv2aBZHQJGZlZX+2mZ1fZQoaAZoCWgPQwhWKqio+jhxQJSGlFKUaBVNcAFoFkdAkZoxDLKV6nV9lChoBmgJaA9DCIVefxIfRXFAlIaUUpRoFU0yAWgWR0CRmmdxAB1cdX2UKGgGaAloD0MICKuxhDVTcECUhpRSlGgVTSkBaBZHQJGdU9IPK+11fZQoaAZoCWgPQwgArmTHRoxjQJSGlFKUaBVN6ANoFkdAkZ3zFMqSYHV9lChoBmgJaA9DCMx9chSgUG9AlIaUUpRoFU0mAWgWR0CRnjXhfjS5dX2UKGgGaAloD0MIpABRMCPXcUCUhpRSlGgVTS4BaBZHQJGeSBun/DN1fZQoaAZoCWgPQwj0GOWZ1+JxQJSGlFKUaBVNSAFoFkdAkZ660+kgwHV9lChoBmgJaA9DCLtgcM3df3BAlIaUUpRoFU0QAWgWR0CRn71RtP56dX2UKGgGaAloD0MIL8IU5VJLcUCUhpRSlGgVTSMBaBZHQJGf+e2/i5x1fZQoaAZoCWgPQwiw5ZXr7fhvQJSGlFKUaBVNHwFoFkdAkaCraZhKDnV9lChoBmgJaA9DCKtbPSd9rXFAlIaUUpRoFU0dAWgWR0CRoKtEXtSidX2UKGgGaAloD0MIYyZRLzgKckCUhpRSlGgVTT0BaBZHQJGg7vVmSQp1fZQoaAZoCWgPQwj5n/zdO/9wQJSGlFKUaBVNCQFoFkdAkaGaABkqc3V9lChoBmgJaA9DCLXFNT4TTXBAlIaUUpRoFU0JAWgWR0CRojbkwN9ZdX2UKGgGaAloD0MI88zLYfeWckCUhpRSlGgVTR0BaBZHQJGiOGEf1Yh1fZQoaAZoCWgPQwgxsmSOJYtyQJSGlFKUaBVNowFoFkdAkaJP7el9B3V9lChoBmgJaA9DCM8wtaWOZXBAlIaUUpRoFU0LAWgWR0CRonSaVlf7dX2UKGgGaAloD0MIkgciizSsb0CUhpRSlGgVTWsBaBZHQJGjJWLgn+h1fZQoaAZoCWgPQwiU+UffpCVyQJSGlFKUaBVL92gWR0CRpLqd6LOzdX2UKGgGaAloD0MI6NztemlEcECUhpRSlGgVTR8BaBZHQJGlZ7mdRSB1fZQoaAZoCWgPQwiu2F92z6RxQJSGlFKUaBVNGwFoFkdAkaYUEgW8AnV9lChoBmgJaA9DCGSw4lTrKm9AlIaUUpRoFU0TAWgWR0CRpmKHfuTidX2UKGgGaAloD0MIETroEo62cECUhpRSlGgVTSoBaBZHQJGmlcLSeAd1fZQoaAZoCWgPQwgfEOhMmrtwQJSGlFKUaBVL8GgWR0CRp2/nW8RMdX2UKGgGaAloD0MINQpJZnVFcUCUhpRSlGgVTS8BaBZHQJGoLqyGBWh1fZQoaAZoCWgPQwhVM2spIB1JQJSGlFKUaBVL3WgWR0CRqFKCg9NfdX2UKGgGaAloD0MI+u5Wluixb0CUhpRSlGgVTRcBaBZHQJGoYF/x2B91fZQoaAZoCWgPQwhyameYGp5xQJSGlFKUaBVNIwFoFkdAkbvsbNr0rnV9lChoBmgJaA9DCNQrZRlixW5AlIaUUpRoFU1DAWgWR0CRvClsP8Q7dX2UKGgGaAloD0MICd/7G7S9ckCUhpRSlGgVS/ZoFkdAkbxuyVv/BHV9lChoBmgJaA9DCErP9BJjeW5AlIaUUpRoFU0IAWgWR0CRvKeZ5Rj0dX2UKGgGaAloD0MIy9jQzX5Bb0CUhpRSlGgVTS8BaBZHQJG9vRKHwgF1fZQoaAZoCWgPQwiQL6GCQzpxQJSGlFKUaBVNDQFoFkdAkb3GAwwj+3V9lChoBmgJaA9DCA9gkV8/IHFAlIaUUpRoFU1pAWgWR0CRvoMPjGT+dX2UKGgGaAloD0MIc6CH2rbpckCUhpRSlGgVTRYBaBZHQJHATduYQat1fZQoaAZoCWgPQwgYXd4croZxQJSGlFKUaBVNNAFoFkdAkcCX5rP+oHV9lChoBmgJaA9DCOiFOxdGznBAlIaUUpRoFU0KAWgWR0CRwTxIatLddX2UKGgGaAloD0MIsd09QLcJckCUhpRSlGgVTSgBaBZHQJHBry5I6Kd1fZQoaAZoCWgPQwjc9dIUQblxQJSGlFKUaBVL+2gWR0CRwseOGTLXdX2UKGgGaAloD0MIrP4Iw8A9cECUhpRSlGgVTQQBaBZHQJHDJwQ176Z1fZQoaAZoCWgPQwi+h0uOOy9wQJSGlFKUaBVNDAFoFkdAkcMxqTKT0XV9lChoBmgJaA9DCLQ9esM9EHJAlIaUUpRoFU0wAWgWR0CRw5cjqv/zdX2UKGgGaAloD0MIE+6VeSuYcUCUhpRSlGgVS/1oFkdAkcPnt4RmLHV9lChoBmgJaA9DCJ0OZD21Z21AlIaUUpRoFU0WAWgWR0CRxEkTpPhydX2UKGgGaAloD0MIob/QI0brbkCUhpRSlGgVTSQBaBZHQJHEbCcf/3p1fZQoaAZoCWgPQwgPZD21+mZwQJSGlFKUaBVNJQFoFkdAkcUrs4T9KnV9lChoBmgJaA9DCHedDfnnSXFAlIaUUpRoFU0EAWgWR0CRxW2OQyRCdX2UKGgGaAloD0MI4ZUkz/WZb0CUhpRSlGgVTaMBaBZHQJHFjuYx+KF1fZQoaAZoCWgPQwj9vn/zIgpxQJSGlFKUaBVL/2gWR0CRxg6lchTwdX2UKGgGaAloD0MIuvWaHhTLcUCUhpRSlGgVTSIBaBZHQJHGI5tFa0R1fZQoaAZoCWgPQwiMuWsJOVtwQJSGlFKUaBVL+WgWR0CRyGgJkXk6dX2UKGgGaAloD0MIWYgOgaNvcECUhpRSlGgVTR0BaBZHQJHI6xVyWAx1fZQoaAZoCWgPQwjJBPwaSS1vQJSGlFKUaBVNEwFoFkdAkcmeiFj/dnV9lChoBmgJaA9DCNF5jV2ie3BAlIaUUpRoFU1FAWgWR0CRye052hZhdX2UKGgGaAloD0MI7PoFuyH8cUCUhpRSlGgVS/doFkdAkcoRqbjLjnV9lChoBmgJaA9DCHSV7q7zr3FAlIaUUpRoFU0WAWgWR0CRyqGPxQSBdX2UKGgGaAloD0MInnx6bMv/b0CUhpRSlGgVTRoBaBZHQJHLDSVnmJZ1fZQoaAZoCWgPQwj19XzNsrtzQJSGlFKUaBVL/WgWR0CRy2d69kBkdX2UKGgGaAloD0MIgehJmVQab0CUhpRSlGgVTR4BaBZHQJHLx2eQMhJ1fZQoaAZoCWgPQwgD6zh+qDFyQJSGlFKUaBVNOgFoFkdAkcxAk1Mue3V9lChoBmgJaA9DCP5D+u1ryG1AlIaUUpRoFU0LAWgWR0CRzOe9i+cpdX2UKGgGaAloD0MIomDGFCwecECUhpRSlGgVTTIBaBZHQJHORKTSssB1fZQoaAZoCWgPQwi+nxovnYFxQJSGlFKUaBVNJAFoFkdAkc6SO/+Kj3V9lChoBmgJaA9DCEZ8J2Y9rG9AlIaUUpRoFU08AWgWR0CRzzRRdhRZdX2UKGgGaAloD0MImntI+N6zckCUhpRSlGgVS/5oFkdAkc/MCo0hvHV9lChoBmgJaA9DCEmD29rC6HFAlIaUUpRoFUvvaBZHQJHQhjTa0yB1fZQoaAZoCWgPQwjfpGlQtLRxQJSGlFKUaBVNNAFoFkdAkdIgJ1JUYXV9lChoBmgJaA9DCFzHuOLiM25AlIaUUpRoFU0VAWgWR0CR0ioEjgQ6dX2UKGgGaAloD0MImfT3UjhKcUCUhpRSlGgVTQQBaBZHQJHScNkOI691fZQoaAZoCWgPQwgg0QSKGDVwQJSGlFKUaBVNPgFoFkdAkdPG912aD3V9lChoBmgJaA9DCDy+vWvQO3BAlIaUUpRoFU0iAWgWR0CR1SByCFsYdX2UKGgGaAloD0MI+mGE8OgzbkCUhpRSlGgVTTwBaBZHQJHVjyc0+C91fZQoaAZoCWgPQwi29dN/VtJyQJSGlFKUaBVNSwFoFkdAkdWZMpPRA3V9lChoBmgJaA9DCF8pyxBHhHBAlIaUUpRoFU0ZAWgWR0CR1jeu3c59dX2UKGgGaAloD0MI/vFetXJbcECUhpRSlGgVTUEBaBZHQJHWr3i704B1fZQoaAZoCWgPQwhoImx4uhhzQJSGlFKUaBVL/2gWR0CR1wJDmbLEdX2UKGgGaAloD0MI492RsRqEcUCUhpRSlGgVTVwCaBZHQJHXf+98JD51fZQoaAZoCWgPQwjKwtfXuhVvQJSGlFKUaBVL+GgWR0CR1/7EYO2BdX2UKGgGaAloD0MI10//WXOybUCUhpRSlGgVTQ4BaBZHQJHYC/0ulGh1fZQoaAZoCWgPQwjf+UUJepJuQJSGlFKUaBVNSAFoFkdAkdjFTzd1uHV9lChoBmgJaA9DCGkCRSzi3HJAlIaUUpRoFU0FAWgWR0CR2QDEWIoFdX2UKGgGaAloD0MIjBAebdx4c0CUhpRSlGgVS+NoFkdAkdlabz9S/HV9lChoBmgJaA9DCPHxCdn5KG9AlIaUUpRoFUvxaBZHQJHZsZBLPD51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f746b2a4dfdd856ea6707bc9328ed5d66cd44935ae8c894205374d08393679b0
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfdae816e9fc12255a8d8bdf63552b54581fa39addbacbddd640835f13a42679
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (225 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.1921826440538, "std_reward": 20.25610821478141, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-26T05:51:59.304883"}
|