|
import cv2 |
|
import numpy as np |
|
import pandas as pd |
|
import random |
|
from functools import singledispatchmethod |
|
import math |
|
import os |
|
|
|
from sympy import false |
|
import config |
|
|
|
class MapIn: |
|
|
|
tree_safe_dist = config.TREE_SAFE_DIST |
|
facility_safe_dist = config.FACILITY_SAFE_DIST |
|
|
|
parcel_minimum_area = config.AXIS_MIN_AREA |
|
|
|
access_ratio = config.ACCESS_RATIO |
|
|
|
""" |
|
map class to handle raw inputs |
|
RGB (round access, green factor, boundary) |
|
Background is white by deafult |
|
Black shows fixed facilities |
|
""" |
|
@singledispatchmethod |
|
def __init__(self) -> None: |
|
assert False, 'bad input' |
|
@__init__.register(str) |
|
def _first__(self,src:str,src_block:str,src_ff:str,parcel_cnt:int,arch_choice:config.ArchStyles,map_id:int) -> None: |
|
self.roud_thickness = config.ROAD_SIZE_MAX |
|
self.map_id = map_id |
|
self.frame = cv2.imread(src) |
|
self.frame_shape = self.frame.shape |
|
self.arch_choice = arch_choice |
|
self.parcel_cnt = parcel_cnt |
|
self.centers = (int(self.frame_shape[0]/2),int(self.frame_shape[1]/2)) |
|
self.trees_mask, self.fixed_f_mask,self.access_mask, self.boundry_mask = self.create_masks() |
|
self.trees_binary_mask = cv2.threshold(self.trees_mask, 127, 255, cv2.THRESH_BINARY)[1] |
|
|
|
self.block_mask = cv2.imread(src_block) |
|
self.block_mask = cv2.cvtColor(self.block_mask,cv2.COLOR_BGR2GRAY) |
|
|
|
self.facility_filled_mask = cv2.imread(src_ff) |
|
self.facility_filled_mask = cv2.cvtColor(self.facility_filled_mask,cv2.COLOR_BGR2GRAY) |
|
self.print_report() |
|
|
|
|
|
@__init__.register(np.ndarray) |
|
def _second__(self,split_mask:np.ndarray,parent_map,line_mask:np.ndarray,map_id:int,dir:int,line_p) -> None: |
|
self.line_p = line_p |
|
|
|
self.split_mask = split_mask |
|
self.dir = dir |
|
self.roud_thickness = config.ROAD_SIZE_MAX - config.ROAD_STEP*int(math.log(map_id+1,2)) |
|
if self.roud_thickness <= config.ROAD_STEP: self.roud_thickness=config.ROAD_SIZE_MIN |
|
config.log(f"roud thickness:{self.roud_thickness} map_id:{map_id}") |
|
self.map_id = map_id |
|
|
|
|
|
split_3d_mask = np.zeros(parent_map.frame_shape, dtype=np.uint8) |
|
split_3d_mask[:,:,:] = split_mask[:,:,np.newaxis] |
|
self.frame = parent_map.frame & split_3d_mask |
|
self.frame_shape = self.frame.shape |
|
self.arch_choice = parent_map.arch_choice |
|
self.centers = (int(self.frame_shape[0]/2),int(self.frame_shape[1]/2)) |
|
self.trees_mask = parent_map.trees_mask & split_mask |
|
self.trees_binary_mask = parent_map.trees_binary_mask & split_mask |
|
self.fixed_f_mask = parent_map.fixed_f_mask & split_mask |
|
self.boundry_mask = parent_map.boundry_mask & split_mask |
|
self.old_boundry_mask = parent_map.boundry_mask & split_mask |
|
self.block_mask = parent_map.block_mask & split_mask |
|
self.facility_filled_mask = parent_map.facility_filled_mask & split_mask |
|
|
|
new_access_line = self.block_mask & line_mask |
|
self.access_mask = parent_map.access_mask & split_mask |
|
self.access_mask = self.access_mask | new_access_line |
|
|
|
self.boundry_mask = self.boundry_mask | new_access_line |
|
self.new_access_line = new_access_line |
|
if map_id > 2: |
|
self.parent_access_line = parent_map.new_access_line |
|
self.parent_line_p = parent_map.line_p |
|
else: |
|
self.parent_access_line = self.new_access_line |
|
self.parent_line_p = self.line_p |
|
self.save_map() |
|
self.print_report() |
|
|
|
|
|
@__init__.register(int) |
|
def _third__(self,parcel_id:int,split_mask:np.ndarray,parent_map,parcel_area,lines_points_tup,parcel_type) -> None: |
|
self.dir = parent_map.dir |
|
self.parent_line_p = parent_map.parent_line_p |
|
self.line_p = parent_map.line_p |
|
self.parent_access_line = parent_map.parent_access_line & split_mask |
|
self.access_line = parent_map.new_access_line & split_mask |
|
self.parcel_id = parcel_id |
|
self.curr_size = parcel_area |
|
self.bounding_lines = lines_points_tup |
|
self.parcel_type = parcel_type |
|
self.map_id = parent_map.map_id |
|
split_3d_mask = np.zeros(parent_map.frame_shape, dtype=np.uint8) |
|
split_3d_mask[:,:,:] = split_mask[:,:,np.newaxis] |
|
self.frame = parent_map.frame & split_3d_mask |
|
self.frame_shape = self.frame.shape |
|
self.arch_choice = parent_map.arch_choice |
|
self.trees_mask = parent_map.trees_mask & split_mask |
|
self.trees_binary_mask = parent_map.trees_binary_mask & split_mask |
|
self.fixed_f_mask = parent_map.fixed_f_mask & split_mask |
|
self.boundry_mask = parent_map.boundry_mask & split_mask |
|
self.block_mask = parent_map.block_mask & split_mask |
|
self.facility_filled_mask = parent_map.facility_filled_mask & split_mask |
|
|
|
block_mask = self.block_mask.astype(np.uint8) |
|
contours, _ = cv2.findContours(block_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) |
|
cnts = sorted(contours, key=cv2.contourArea, reverse=True) |
|
M = cv2.moments(cnts[0]) |
|
cX = int(M["m10"] / M["m00"]) |
|
cY = int(M["m01"] / M["m00"]) |
|
self.parcel_center = (cY,cX) |
|
|
|
self.print_report() |
|
|
|
def print_report(self): |
|
config.log(f"Map {self.map_id} Area : {np.sum(self.block_mask)/255}") |
|
config.log(f"Map {self.map_id} Tree Area : {np.sum(self.trees_binary_mask)/255}") |
|
config.log(f"Map {self.map_id} Fixed-Facility Area : {np.sum(self.facility_filled_mask)/255}") |
|
config.log(f"Map {self.map_id} Sparse Area : {np.sum(self.block_mask & np.bitwise_not(self.facility_filled_mask) & np.bitwise_not(self.trees_binary_mask))/255}") |
|
|
|
def set_map_axis_center(self,point): |
|
self.axis_center = point |
|
def set_line_point(self,point:tuple): |
|
self.line_points = point |
|
|
|
def save_map(self) -> None: |
|
if config.WRITE_UNNECESSARY: |
|
cv2.imwrite(f'outputs/map{self.map_id}.bmp',self.frame) |
|
cv2.imwrite(f'outputs/access_mask{self.map_id}.bmp',self.access_mask) |
|
cv2.imwrite(f'outputs/boundry_mask{self.map_id}.bmp',self.boundry_mask) |
|
|
|
def create_masks(self) -> tuple: |
|
res = [] |
|
img_re = self.frame.reshape(-1,3) |
|
df = pd.DataFrame(img_re,columns=['b','g','r']) |
|
df['r'].astype(np.uint8) |
|
df['g'].astype(np.uint8) |
|
df['b'].astype(np.uint8) |
|
|
|
indx_trees = df.apply(lambda x: x.b==0 and 0<x.g<=255 and x.r==0, axis=1) |
|
df_trees = df.copy() |
|
df_trees[np.logical_not(indx_trees)] = [0,0,0] |
|
|
|
out = df_trees.values.reshape(self.frame_shape) |
|
out = out.astype(np.uint8) |
|
out[:,:,0] = 0 |
|
out[:,:,2] = 0 |
|
out = cv2.threshold(out, 127, 255, cv2.THRESH_BINARY)[1][:,:,1] |
|
res.append(out) |
|
cv2.imwrite('outputs/tree_mask.bmp',out) |
|
|
|
indx_fixed_fac = df.apply(lambda x: x.b==0 and x.g==0 and x.r==0, axis=1) |
|
df_ff = df.copy() |
|
df_ff[np.logical_not(indx_fixed_fac)] = [0,0,0] |
|
df_ff[indx_fixed_fac] = [255,255,255] |
|
out = df_ff.values.reshape(self.frame_shape) |
|
out = out.astype(np.uint8) |
|
out = cv2.cvtColor(out,cv2.COLOR_BGR2GRAY) |
|
res.append(out) |
|
cv2.imwrite('outputs/facility_mask.bmp',out) |
|
|
|
indx_access = df.apply(lambda x: x.g==0 and x.r==255, axis=1) |
|
df_ac = df.copy() |
|
df_ac[np.logical_not(indx_access)] = [0,0,0] |
|
df_ac[indx_access] = [255,255,255] |
|
out = df_ac.values.reshape(self.frame_shape) |
|
out = out.astype(np.uint8) |
|
out = cv2.cvtColor(out,cv2.COLOR_BGR2GRAY) |
|
res.append(out) |
|
cv2.imwrite('outputs/access_mask.bmp',out) |
|
|
|
indx_boundry = df.apply(lambda x: x.b==255 and x.g==0, axis=1) |
|
df_b = df.copy() |
|
df_b[np.logical_not(indx_boundry)] = [0,0,0] |
|
df_b[indx_boundry] = [255,255,255] |
|
out = df_b.values.reshape(self.frame_shape) |
|
out = out.astype(np.uint8) |
|
out = cv2.cvtColor(out,cv2.COLOR_BGR2GRAY) |
|
res.append(out) |
|
cv2.imwrite('outputs/boundary_mask.bmp',out) |
|
return tuple(res) |
|
|
|
def correct_input(self) -> None: |
|
img_re = self.frame.reshape(-1,3) |
|
df = pd.DataFrame(img_re,columns=['b','g','r']) |
|
df['r'].astype(np.uint8) |
|
df['g'].astype(np.uint8) |
|
df['b'].astype(np.uint8) |
|
|
|
random.seed(13) |
|
df = df.apply(lambda x: [0,random.randint(1,255),0] if x['b']==0 and x['g']==255 and x['r']==0 else x,axis=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
out = df.values.reshape(self.frame_shape) |
|
out = out.astype(np.uint8) |
|
cv2.imwrite('outputs/kan_pre.bmp',out) |
|
self.frame = out |
|
|
|
|
|
|
|
|
|
|
|
""" |
|
returns above the line mask and below the line mask |
|
""" |
|
def line_split_mask_maker(self,p0:tuple,p1:tuple): |
|
|
|
img_pixels = self.frame_shape[0]*self.frame_shape[1] |
|
img_x = self.frame_shape[1] |
|
|
|
|
|
y_index = (np.arange(img_pixels).reshape(self.frame_shape[:2])/img_x).astype(np.uint32) |
|
x_index = np.arange(img_pixels).reshape(self.frame_shape[:2])%img_x |
|
if p1[1] == p0[1]: |
|
up_down_line = x_index - p0[1] |
|
else: |
|
slope = (p1[0]-p0[0])/(p1[1]-p0[1]) |
|
intercept = p0[0] - (slope*p0[1]) |
|
up_down_line = x_index*slope + intercept - y_index |
|
|
|
down_mask = np.where(up_down_line>=0,255,0).reshape(self.frame_shape[:2]) |
|
up_mask = np.where(up_down_line>=0,0,255).reshape(self.frame_shape[:2]) |
|
return (up_mask,down_mask) |
|
""" |
|
returns only line mask on main image |
|
""" |
|
def line_mask_maker(self,p0:tuple,p1:tuple): |
|
plain = np.zeros((self.block_mask.shape)) |
|
plain = cv2.line(plain,(p0[1],p0[0]),(p1[1],p1[0]),255,2) |
|
return plain.astype(np.uint8) |
|
|
|
|
|
""" |
|
check whether the half map has a feasible condition |
|
or supports the finishing condtion. |
|
""" |
|
def isfeasible(self): |
|
|
|
access = np.sum(self.access_mask)/255 |
|
boundry = np.sum(self.boundry_mask)/255 |
|
access_ratio = access/boundry |
|
access_cond = access_ratio<self.access_ratio |
|
|
|
block_size = np.sum(self.block_mask)/255 |
|
size_cond = block_size>self.parcel_minimum_area |
|
config.log(f'block size:{block_size} access_ratio:{access_ratio} map_id:{self.map_id}') |
|
self.curr_access = access_ratio |
|
self.curr_size = block_size |
|
return access_cond and size_cond |
|
|
|
class CVLineThickness: |
|
""" |
|
method selects cv2line arg |
|
depending on the pixel width |
|
""" |
|
@staticmethod |
|
def thickness_solver(desired_thickness): |
|
if desired_thickness == 1: |
|
return 1 |
|
if desired_thickness == 2: |
|
|
|
return 2 |
|
if desired_thickness == 3: |
|
return 2 |
|
if desired_thickness % 2 == 0: |
|
|
|
return desired_thickness - 1 |
|
|
|
return desired_thickness - 2 |
|
|
|
|
|
class MapOut: |
|
def __init__(self,src:str,lines_axis:list) -> None: |
|
self.img = cv2.imread(src) |
|
self.img_axised = self.img.copy() |
|
self.img_partitioned = None |
|
self.img_built = None |
|
self.img_last = None |
|
self.axis_lines = lines_axis |
|
self.partitioning_lines = None |
|
self.parcels_dic = {} |
|
self.building_masks = None |
|
|
|
self.total_carbon = 0 |
|
self.total_trees = 0 |
|
self.total_carbon_loss = 0 |
|
self.total_cut_tree = 0 |
|
self.total_axis_length = 0 |
|
self.total_axis_per_block_pr = 0 |
|
self.total_num_parcels = 0 |
|
self.total_num_parcels_types = {p_type:0 for p_type in config.ParcelType._member_names_} |
|
self.total_sum_ff = 0 |
|
|
|
def reset_map_for_partitioning(self): |
|
self.total_num_parcels = 0 |
|
self.total_num_parcels_types = {p_type:0 for p_type in config.ParcelType._member_names_} |
|
self.total_sum_ff = 0 |
|
self.partitioning_lines = None |
|
if self.img_partitioned is not None: |
|
self.img_partitioned = None |
|
self.img_last = self.img_axised.copy() |
|
|
|
def reset_map_for_location_finding(self): |
|
self.total_sum_ff = 0 |
|
self.building_masks = None |
|
if self.img_built is not None: |
|
self.img_built = None |
|
self.img_last = self.img_partitioned.copy() |
|
|
|
def add_partition_report(self,report): |
|
self.total_num_parcels += report['cnt'] |
|
report.pop('cnt') |
|
for p_type in report.keys(): |
|
self.total_num_parcels_types[p_type] += report[p_type] |
|
|
|
def report(self): |
|
self.block_mask = cv2.imread(config.MAIN_MAP_FILLED_BLOCK_MASK) |
|
self.tree_mask = cv2.imread('outputs/tree_mask.bmp') |
|
self.binary_tree_mask = cv2.threshold(self.tree_mask, 127, 255, cv2.THRESH_BINARY)[1] |
|
self.facility_filled_mask = cv2.imread(config.MAIN_MAP_FILLED_F_F_MASK) |
|
|
|
self.total_carbon = np.sum(self.tree_mask)/3 |
|
self.total_trees = np.sum(self.binary_tree_mask)/(255*3) |
|
|
|
self.img_last = self.img_last & self.block_mask |
|
self.img_last = self.img_last.astype(np.uint8) |
|
self.img_mask = cv2.threshold(self.img_last, 127, 255, cv2.THRESH_BINARY)[1] |
|
|
|
self.roads_mask = cv2.imread('outputs/roads_mask.bmp') |
|
collision3dmask = self.roads_mask |
|
if os.path.exists('outputs/buildings_mask.bmp'): |
|
collision3dmask = collision3dmask | cv2.imread('outputs/buildings_mask.bmp') |
|
if os.path.exists('outputs/partitioning_mask.bmp'): |
|
collision3dmask = collision3dmask | cv2.imread('outputs/partitioning_mask.bmp') |
|
cv2.imwrite('outputs/constructed_mask.bmp', collision3dmask) |
|
self.total_carbon_loss = np.sum(collision3dmask & self.tree_mask)/3 |
|
self.total_cut_tree = np.sum(collision3dmask & self.binary_tree_mask)/(255*3) |
|
config.log(f"Total Trees:{self.total_trees} Total Carbon Values:{self.total_carbon}") |
|
config.log(f"Total Cut Trees:{self.total_cut_tree} Total Carbon Loss:{self.total_carbon_loss}") |
|
config.log(f"Total Cut Precentage:{self.total_cut_tree/self.total_trees}") |
|
|
|
img_re = self.img_last.reshape(-1,3) |
|
df = pd.DataFrame(img_re,columns=['b','g','r']) |
|
df['r'].astype(np.uint8) |
|
df['g'].astype(np.uint8) |
|
df['b'].astype(np.uint8) |
|
indx_axis = df.apply(lambda x:x.g == 0 and 0<x.r<=255 and x.b == 0, axis=1) |
|
df_axis = df.copy() |
|
df_axis[np.logical_not(indx_axis)] = [0,0,0] |
|
out = df_axis.values.reshape(self.img_last.shape) |
|
out = out.astype(np.uint8) |
|
out = cv2.cvtColor(out,cv2.COLOR_BGR2GRAY) |
|
out = cv2.threshold(out, 1, 255, cv2.THRESH_BINARY)[1] |
|
self.total_axis_length = np.sum(out)/255 |
|
self.total_axis_per_block_pr = self.total_axis_length / (np.sum(self.block_mask)/(255*3)) |
|
sparse_area = np.sum(self.block_mask & np.bitwise_not(self.facility_filled_mask) & np.bitwise_not(self.binary_tree_mask))/(255*3) |
|
self.total_axis_per_sparse_pr = self.total_axis_length / sparse_area |
|
config.log(f"Total Axis Area:{self.total_axis_length}") |
|
config.log(f"Total Block Area:{np.sum(self.block_mask)/(255*3)}") |
|
config.log(f"Total Sparse Area:{sparse_area}") |
|
config.log(f"Total Axis Per Block Precentage:{self.total_axis_per_block_pr}") |
|
config.log(f"Total Axis Per Sparse Precentage:{self.total_axis_per_sparse_pr}") |
|
|
|
config.log(f"Total Parcels:{self.total_num_parcels}") |
|
config.log(f"Total Parcel types:{self.total_num_parcels_types}") |
|
config.log(f"Total Parcels With FF:{self.total_sum_ff}") |
|
|
|
|
|
|
|
def draw_axis(self): |
|
for line in self.axis_lines: |
|
p0=line[0][0] |
|
p1=line[0][1] |
|
thickness=config.ROAD_SIZE_MAX - config.ROAD_STEP*int(math.log(line[1]+1,2)) |
|
if thickness <= config.ROAD_SIZE_MIN: |
|
thickness=config.ROAD_SIZE_MIN |
|
|
|
self.img_axised = cv2.line(self.img_axised,(p0[1],p0[0]),(p1[1],p1[0]),(0,0,127),CVLineThickness.thickness_solver(thickness+2)) |
|
|
|
self.img_axised = cv2.line(self.img_axised,(p0[1],p0[0]),(p1[1],p1[0]),(0,0,255),CVLineThickness.thickness_solver(thickness)) |
|
cv2.imwrite('outputs/final_axis.bmp',self.img_axised) |
|
|
|
img_re = self.img_axised.reshape(-1,3).copy() |
|
df = pd.DataFrame(img_re,columns=['b','g','r']) |
|
df['r'].astype(np.uint8) |
|
df['g'].astype(np.uint8) |
|
df['b'].astype(np.uint8) |
|
indx_axis = df.apply(lambda x:x.g == 0 and 0<x.r<=255 and x.b == 0, axis=1) |
|
df[np.logical_not(indx_axis)] = [0,0,0] |
|
out = df.values.reshape(self.img_axised.shape) |
|
out = out.astype(np.uint8) |
|
out = cv2.cvtColor(out,cv2.COLOR_BGR2GRAY) |
|
out = cv2.threshold(out, 1, 255, cv2.THRESH_BINARY)[1] |
|
self.img_last = self.img_axised.copy() |
|
cv2.imwrite('outputs/roads_mask.bmp', out) |
|
|
|
def draw_partitions(self,iteration:int,map:MapIn,lines_parcels:list): |
|
map_id = map.map_id |
|
if lines_parcels is not None: |
|
self.parcels_dic[map_id] = lines_parcels |
|
lines_mask = np.zeros(self.img_last.shape, dtype=np.uint8) |
|
for line in lines_parcels: |
|
p0=line[0] |
|
p1=line[1] |
|
|
|
lines_mask = cv2.line(lines_mask,(p0[1],p0[0]),(p1[1],p1[0]),(120,120,120),1) |
|
split_3d_mask = np.zeros(self.img_last.shape, dtype=np.uint8) |
|
split_3d_mask[:,:,:] = map.block_mask[:,:,np.newaxis] |
|
lines_mask = lines_mask & split_3d_mask |
|
self.img_partitioned = self.img_last.astype(np.uint8) & np.bitwise_not(lines_mask) |
|
|
|
lines_mask = np.where(lines_mask>0,(255,255,255), (0,0,0)) |
|
if self.partitioning_lines is not None: |
|
self.partitioning_lines |= lines_mask |
|
else: |
|
self.partitioning_lines = lines_mask |
|
if config.WRITE_UNNECESSARY: |
|
cv2.imwrite(f'outputs/final_map_{iteration}_{map_id}.bmp',self.img_partitioned) |
|
self.img_last = self.img_partitioned.copy() |
|
|
|
def draw_partitioning_results(self): |
|
cv2.imwrite(f'outputs/partitioning_mask.bmp',self.partitioning_lines) |
|
cv2.imwrite(f'outputs/final_map_partitioning.bmp',self.img_partitioned) |
|
|
|
|
|
def draw_building(self,building_mask,iteration,map_id,parcel_id,has_building,parcel_type,block_mask): |
|
color3d_mask = np.zeros(self.img_last.shape, dtype=np.uint8) |
|
color3d_mask[:,:,:] = block_mask[:,:,np.newaxis] |
|
if has_building: |
|
self.total_sum_ff += 1 |
|
color3d_mask = np.where(color3d_mask>0,(100,100,100),(255,255,255)) |
|
elif parcel_type == config.ParcelType.O: |
|
color3d_mask = np.where(color3d_mask>0,(0,255,255),(255,255,255)) |
|
elif parcel_type == config.ParcelType.A: |
|
color3d_mask = np.where(color3d_mask>0,(51,255,255),(255,255,255)) |
|
elif parcel_type == config.ParcelType.B: |
|
color3d_mask = np.where(color3d_mask>0,(102,255,255),(255,255,255)) |
|
elif parcel_type == config.ParcelType.C: |
|
color3d_mask = np.where(color3d_mask>0,(153,255,255),(255,255,255)) |
|
elif parcel_type == config.ParcelType.U: |
|
color3d_mask = np.where(color3d_mask>0,(40,0,255),(255,255,255)) |
|
|
|
build3d_mask = np.zeros(self.img.shape, dtype=np.uint8) |
|
build3d_mask[:,:,:] = building_mask[:,:,np.newaxis] |
|
if self.building_masks is not None: |
|
self.building_masks &= build3d_mask |
|
self.img_last &= self.img_partitioned & build3d_mask |
|
self.img_built &= self.img_partitioned & build3d_mask & color3d_mask |
|
else: |
|
self.building_masks = build3d_mask |
|
self.img_last = self.img_partitioned & build3d_mask |
|
self.img_built = self.img_partitioned & build3d_mask & color3d_mask |
|
if config.WRITE_UNNECESSARY: |
|
cv2.imwrite(f'outputs/final_map_{iteration}_{map_id}_{parcel_id}.bmp',self.img_built) |
|
|
|
def draw_building_results(self): |
|
cv2.imwrite(f'outputs/buildings_mask.bmp',np.bitwise_not(self.building_masks)) |
|
cv2.imwrite(f'outputs/final_map_location_finding.bmp',self.img_built) |
|
|
|
|
|
def draw_collision(self): |
|
trees_mask = cv2.imread('outputs/tree_mask.bmp') |
|
fixed_facility_mask = cv2.imread('outputs/facility_mask.bmp') |
|
roads_mask = cv2.imread('outputs/roads_mask.bmp') |
|
collide_mask = roads_mask |
|
if os.path.exists('outputs/buildings_mask.bmp'): |
|
collide_mask |= cv2.imread('outputs/buildings_mask.bmp') |
|
if os.path.exists('outputs/partitioning_mask.bmp'): |
|
collide_mask |= cv2.imread('outputs/partitioning_mask.bmp') |
|
|
|
collision3dmask = trees_mask | fixed_facility_mask |
|
collision3dmask = collide_mask & collision3dmask |
|
img = self.img_last.copy() |
|
pixels = [100,50,100]*int(len(img[collision3dmask>0])/3) |
|
img[collision3dmask>0] = pixels |
|
|
|
cv2.imwrite(f'outputs/collision_map.bmp',img) |