aminlouhichi commited on
Commit
60125b2
1 Parent(s): 9e728e5

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29fec284391d20f5185528fdf7c7d62795dcc6a803a1380d87940a5f094a6d2e
3
+ size 2364028
README.md ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:n<1K
9
+ - loss:CoSENTLoss
10
+ base_model: sentence-transformers/LaBSE
11
+ widget:
12
+ - source_sentence: Personnel contractuel
13
+ sentences:
14
+ - Vacataire
15
+ - Départ définitif pour cause de mutation
16
+ - Fin du temps partiel thérapeutique
17
+ - source_sentence: Prolongation de stage
18
+ sentences:
19
+ - Titularisation
20
+ - Renouvellement du congé de longue durée
21
+ - Fin du temps partiel thérapeutique
22
+ - source_sentence: ' avancement d''échelon'
23
+ sentences:
24
+ - 'Avancement d''échelon '
25
+ - Renouvellement du congé de longue durée
26
+ - Disponibilité pour suivre un conjoint ou un partenaire lié par un PACS
27
+ - source_sentence: Sanction disciplinaire
28
+ sentences:
29
+ - Sanction suite à une infraction disciplinaire
30
+ - Départ définitif - Radiation des cadres
31
+ - Disponibilité pour suivre un conjoint ou un partenaire lié par un PACS
32
+ - source_sentence: Temps partiel surcotisé
33
+ sentences:
34
+ - Temps partiel surcotisé de droit
35
+ - Départ définitif - Radiation des cadres
36
+ - Fin du temps partiel thérapeutique
37
+ pipeline_tag: sentence-similarity
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/LaBSE
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 50fe0940fa3ca3be4d2170f21395beb6d581fc44 -->
49
+ - **Maximum Sequence Length:** 256 tokens
50
+ - **Output Dimensionality:** 768 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
69
+ (3): Normalize()
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("aminlouhichi/CDGSmilarity")
89
+ # Run inference
90
+ sentences = [
91
+ 'Temps partiel surcotisé',
92
+ 'Temps partiel surcotisé de droit',
93
+ 'Départ définitif - Radiation des cadres',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 768]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 295 training samples
149
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | premise | hypothesis | label |
152
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
153
+ | type | string | string | float |
154
+ | details | <ul><li>min: 4 tokens</li><li>mean: 9.31 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.41 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.95</li><li>max: 1.0</li></ul> |
155
+ * Samples:
156
+ | premise | hypothesis | label |
157
+ |:---------------------------------------------------------------------------------|:------------------------------------------------------------------|:--------------------------------|
158
+ | <code>Compte rendu d'entretien professionnel</code> | <code>Synthèse des discussions professionnelles</code> | <code>0.9820208462484844</code> |
159
+ | <code>Congé Accident de trajet</code> | <code>Arrêt de travail pour accident de trajet</code> | <code>0.9755981363214147</code> |
160
+ | <code>Retrait ou suppression du CTI (complément de traitement indiciaire)</code> | <code>Retrait du Complément de Traitement Indiciaire (CTI)</code> | <code>0.9524167934189104</code> |
161
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
162
+ ```json
163
+ {
164
+ "scale": 20.0,
165
+ "similarity_fct": "pairwise_cos_sim"
166
+ }
167
+ ```
168
+
169
+ ### Evaluation Dataset
170
+
171
+ #### Unnamed Dataset
172
+
173
+
174
+ * Size: 74 evaluation samples
175
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
176
+ * Approximate statistics based on the first 1000 samples:
177
+ | | premise | hypothesis | label |
178
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
179
+ | type | string | string | float |
180
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.26 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.5 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.95</li><li>max: 1.0</li></ul> |
181
+ * Samples:
182
+ | premise | hypothesis | label |
183
+ |:--------------------------------------------------|:----------------------------------------------------------------|:--------------------------------|
184
+ | <code>Sanction disciplinaire</code> | <code>Mesure punitive suite à une violation du règlement</code> | <code>0.958828679924412</code> |
185
+ | <code>Départ définitif / Radiation - Décès</code> | <code>Départ définitif suite au décès d'un agent</code> | <code>0.9003635138326387</code> |
186
+ | <code>Nomination par intégration directe</code> | <code>Intégration immédiate avec nomination</code> | <code>0.9993378836623817</code> |
187
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
188
+ ```json
189
+ {
190
+ "scale": 20.0,
191
+ "similarity_fct": "pairwise_cos_sim"
192
+ }
193
+ ```
194
+
195
+ ### Training Hyperparameters
196
+ #### Non-Default Hyperparameters
197
+
198
+ - `eval_strategy`: steps
199
+ - `per_device_train_batch_size`: 16
200
+ - `per_device_eval_batch_size`: 16
201
+ - `num_train_epochs`: 30
202
+ - `warmup_ratio`: 0.1
203
+ - `fp16`: True
204
+
205
+ #### All Hyperparameters
206
+ <details><summary>Click to expand</summary>
207
+
208
+ - `overwrite_output_dir`: False
209
+ - `do_predict`: False
210
+ - `eval_strategy`: steps
211
+ - `prediction_loss_only`: True
212
+ - `per_device_train_batch_size`: 16
213
+ - `per_device_eval_batch_size`: 16
214
+ - `per_gpu_train_batch_size`: None
215
+ - `per_gpu_eval_batch_size`: None
216
+ - `gradient_accumulation_steps`: 1
217
+ - `eval_accumulation_steps`: None
218
+ - `learning_rate`: 5e-05
219
+ - `weight_decay`: 0.0
220
+ - `adam_beta1`: 0.9
221
+ - `adam_beta2`: 0.999
222
+ - `adam_epsilon`: 1e-08
223
+ - `max_grad_norm`: 1.0
224
+ - `num_train_epochs`: 30
225
+ - `max_steps`: -1
226
+ - `lr_scheduler_type`: linear
227
+ - `lr_scheduler_kwargs`: {}
228
+ - `warmup_ratio`: 0.1
229
+ - `warmup_steps`: 0
230
+ - `log_level`: passive
231
+ - `log_level_replica`: warning
232
+ - `log_on_each_node`: True
233
+ - `logging_nan_inf_filter`: True
234
+ - `save_safetensors`: True
235
+ - `save_on_each_node`: False
236
+ - `save_only_model`: False
237
+ - `restore_callback_states_from_checkpoint`: False
238
+ - `no_cuda`: False
239
+ - `use_cpu`: False
240
+ - `use_mps_device`: False
241
+ - `seed`: 42
242
+ - `data_seed`: None
243
+ - `jit_mode_eval`: False
244
+ - `use_ipex`: False
245
+ - `bf16`: False
246
+ - `fp16`: True
247
+ - `fp16_opt_level`: O1
248
+ - `half_precision_backend`: auto
249
+ - `bf16_full_eval`: False
250
+ - `fp16_full_eval`: False
251
+ - `tf32`: None
252
+ - `local_rank`: 0
253
+ - `ddp_backend`: None
254
+ - `tpu_num_cores`: None
255
+ - `tpu_metrics_debug`: False
256
+ - `debug`: []
257
+ - `dataloader_drop_last`: False
258
+ - `dataloader_num_workers`: 0
259
+ - `dataloader_prefetch_factor`: None
260
+ - `past_index`: -1
261
+ - `disable_tqdm`: False
262
+ - `remove_unused_columns`: True
263
+ - `label_names`: None
264
+ - `load_best_model_at_end`: False
265
+ - `ignore_data_skip`: False
266
+ - `fsdp`: []
267
+ - `fsdp_min_num_params`: 0
268
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
269
+ - `fsdp_transformer_layer_cls_to_wrap`: None
270
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
271
+ - `deepspeed`: None
272
+ - `label_smoothing_factor`: 0.0
273
+ - `optim`: adamw_torch
274
+ - `optim_args`: None
275
+ - `adafactor`: False
276
+ - `group_by_length`: False
277
+ - `length_column_name`: length
278
+ - `ddp_find_unused_parameters`: None
279
+ - `ddp_bucket_cap_mb`: None
280
+ - `ddp_broadcast_buffers`: False
281
+ - `dataloader_pin_memory`: True
282
+ - `dataloader_persistent_workers`: False
283
+ - `skip_memory_metrics`: True
284
+ - `use_legacy_prediction_loop`: False
285
+ - `push_to_hub`: False
286
+ - `resume_from_checkpoint`: None
287
+ - `hub_model_id`: None
288
+ - `hub_strategy`: every_save
289
+ - `hub_private_repo`: False
290
+ - `hub_always_push`: False
291
+ - `gradient_checkpointing`: False
292
+ - `gradient_checkpointing_kwargs`: None
293
+ - `include_inputs_for_metrics`: False
294
+ - `eval_do_concat_batches`: True
295
+ - `fp16_backend`: auto
296
+ - `push_to_hub_model_id`: None
297
+ - `push_to_hub_organization`: None
298
+ - `mp_parameters`:
299
+ - `auto_find_batch_size`: False
300
+ - `full_determinism`: False
301
+ - `torchdynamo`: None
302
+ - `ray_scope`: last
303
+ - `ddp_timeout`: 1800
304
+ - `torch_compile`: False
305
+ - `torch_compile_backend`: None
306
+ - `torch_compile_mode`: None
307
+ - `dispatch_batches`: None
308
+ - `split_batches`: None
309
+ - `include_tokens_per_second`: False
310
+ - `include_num_input_tokens_seen`: False
311
+ - `neftune_noise_alpha`: None
312
+ - `optim_target_modules`: None
313
+ - `batch_eval_metrics`: False
314
+ - `batch_sampler`: batch_sampler
315
+ - `multi_dataset_batch_sampler`: proportional
316
+
317
+ </details>
318
+
319
+ ### Training Logs
320
+ | Epoch | Step | Training Loss | loss |
321
+ |:-------:|:----:|:-------------:|:------:|
322
+ | 0.5263 | 10 | 12.4933 | - |
323
+ | 1.0526 | 20 | 10.5909 | - |
324
+ | 1.5789 | 30 | 7.0607 | - |
325
+ | 2.1053 | 40 | 4.7061 | - |
326
+ | 2.6316 | 50 | 4.7957 | - |
327
+ | 3.1579 | 60 | 4.624 | - |
328
+ | 3.6842 | 70 | 4.7854 | - |
329
+ | 4.2105 | 80 | 4.5902 | - |
330
+ | 4.7368 | 90 | 4.7051 | - |
331
+ | 5.2632 | 100 | 4.5562 | 4.6756 |
332
+ | 5.7895 | 110 | 4.6376 | - |
333
+ | 6.3158 | 120 | 4.4501 | - |
334
+ | 6.8421 | 130 | 4.5993 | - |
335
+ | 7.3684 | 140 | 4.4878 | - |
336
+ | 7.8947 | 150 | 4.5443 | - |
337
+ | 8.4211 | 160 | 4.3091 | - |
338
+ | 8.9474 | 170 | 4.6699 | - |
339
+ | 9.4737 | 180 | 4.3727 | - |
340
+ | 10.0 | 190 | 4.3888 | - |
341
+ | 10.5263 | 200 | 4.5099 | 5.3597 |
342
+ | 11.0526 | 210 | 4.3427 | - |
343
+ | 11.5789 | 220 | 4.4409 | - |
344
+ | 12.1053 | 230 | 4.3151 | - |
345
+ | 12.6316 | 240 | 4.3522 | - |
346
+ | 13.1579 | 250 | 4.3133 | - |
347
+ | 13.6842 | 260 | 4.3842 | - |
348
+ | 14.2105 | 270 | 4.2708 | - |
349
+ | 14.7368 | 280 | 4.387 | - |
350
+ | 15.2632 | 290 | 4.1131 | - |
351
+ | 15.7895 | 300 | 4.3394 | 5.5109 |
352
+ | 16.3158 | 310 | 4.2948 | - |
353
+ | 16.8421 | 320 | 4.3413 | - |
354
+ | 17.3684 | 330 | 4.1427 | - |
355
+ | 17.8947 | 340 | 4.5521 | - |
356
+ | 18.4211 | 350 | 4.2146 | - |
357
+ | 18.9474 | 360 | 4.2039 | - |
358
+ | 19.4737 | 370 | 4.1412 | - |
359
+ | 20.0 | 380 | 4.0869 | - |
360
+ | 20.5263 | 390 | 4.4763 | - |
361
+ | 21.0526 | 400 | 3.9572 | 5.7054 |
362
+ | 21.5789 | 410 | 4.2114 | - |
363
+ | 22.1053 | 420 | 4.2651 | - |
364
+ | 22.6316 | 430 | 4.2231 | - |
365
+ | 23.1579 | 440 | 4.0521 | - |
366
+ | 23.6842 | 450 | 4.3246 | - |
367
+ | 24.2105 | 460 | 3.9145 | - |
368
+ | 24.7368 | 470 | 4.1701 | - |
369
+ | 25.2632 | 480 | 4.0958 | - |
370
+ | 25.7895 | 490 | 4.1177 | - |
371
+ | 26.3158 | 500 | 4.2388 | 6.3162 |
372
+ | 26.8421 | 510 | 4.3043 | - |
373
+ | 27.3684 | 520 | 3.9634 | - |
374
+ | 27.8947 | 530 | 4.117 | - |
375
+ | 28.4211 | 540 | 4.1732 | - |
376
+ | 28.9474 | 550 | 4.1243 | - |
377
+ | 29.4737 | 560 | 3.7898 | - |
378
+ | 30.0 | 570 | 4.0227 | - |
379
+
380
+
381
+ ### Framework Versions
382
+ - Python: 3.10.12
383
+ - Sentence Transformers: 3.0.0
384
+ - Transformers: 4.41.1
385
+ - PyTorch: 2.3.0+cu121
386
+ - Accelerate: 0.30.1
387
+ - Datasets: 2.19.1
388
+ - Tokenizers: 0.19.1
389
+
390
+ ## Citation
391
+
392
+ ### BibTeX
393
+
394
+ #### Sentence Transformers
395
+ ```bibtex
396
+ @inproceedings{reimers-2019-sentence-bert,
397
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
398
+ author = "Reimers, Nils and Gurevych, Iryna",
399
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
400
+ month = "11",
401
+ year = "2019",
402
+ publisher = "Association for Computational Linguistics",
403
+ url = "https://arxiv.org/abs/1908.10084",
404
+ }
405
+ ```
406
+
407
+ #### CoSENTLoss
408
+ ```bibtex
409
+ @online{kexuefm-8847,
410
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
411
+ author={Su Jianlin},
412
+ year={2022},
413
+ month={Jan},
414
+ url={https://kexue.fm/archives/8847},
415
+ }
416
+ ```
417
+
418
+ <!--
419
+ ## Glossary
420
+
421
+ *Clearly define terms in order to be accessible across audiences.*
422
+ -->
423
+
424
+ <!--
425
+ ## Model Card Authors
426
+
427
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
428
+ -->
429
+
430
+ <!--
431
+ ## Model Card Contact
432
+
433
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
434
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/LaBSE",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b689709ae34bcd873353960f762ce1a8f5431da2a6f0f5ea692325cd6d738764
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff