|
import math |
|
from inspect import isfunction |
|
from typing import Any, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from packaging import version |
|
from torch import nn, einsum |
|
|
|
|
|
if version.parse(torch.__version__) >= version.parse("2.0.0"): |
|
SDP_IS_AVAILABLE = True |
|
from torch.backends.cuda import SDPBackend, sdp_kernel |
|
|
|
BACKEND_MAP = { |
|
SDPBackend.MATH: { |
|
"enable_math": True, |
|
"enable_flash": False, |
|
"enable_mem_efficient": False, |
|
}, |
|
SDPBackend.FLASH_ATTENTION: { |
|
"enable_math": False, |
|
"enable_flash": True, |
|
"enable_mem_efficient": False, |
|
}, |
|
SDPBackend.EFFICIENT_ATTENTION: { |
|
"enable_math": False, |
|
"enable_flash": False, |
|
"enable_mem_efficient": True, |
|
}, |
|
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True}, |
|
} |
|
else: |
|
from contextlib import nullcontext |
|
|
|
SDP_IS_AVAILABLE = False |
|
sdp_kernel = nullcontext |
|
BACKEND_MAP = {} |
|
print( |
|
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, " |
|
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading." |
|
) |
|
|
|
try: |
|
import xformers |
|
import xformers.ops |
|
|
|
XFORMERS_IS_AVAILABLE = True |
|
except: |
|
XFORMERS_IS_AVAILABLE = False |
|
print("no module 'xformers'. Processing without...") |
|
|
|
from .diffusionmodules.util import checkpoint |
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def uniq(arr): |
|
return {el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = ( |
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) |
|
if not glu |
|
else GEGLU(dim, inner_dim) |
|
) |
|
|
|
self.net = nn.Sequential( |
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class LinearAttention(nn.Module): |
|
def __init__(self, dim, heads=4, dim_head=32): |
|
super().__init__() |
|
self.heads = heads |
|
hidden_dim = dim_head * heads |
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) |
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.shape |
|
qkv = self.to_qkv(x) |
|
q, k, v = rearrange( |
|
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 |
|
) |
|
k = k.softmax(dim=-1) |
|
context = torch.einsum("bhdn,bhen->bhde", k, v) |
|
out = torch.einsum("bhde,bhdn->bhen", context, q) |
|
out = rearrange( |
|
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w |
|
) |
|
return self.to_out(out) |
|
|
|
|
|
class SpatialSelfAttention(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = rearrange(q, "b c h w -> b (h w) c") |
|
k = rearrange(k, "b c h w -> b c (h w)") |
|
w_ = torch.einsum("bij,bjk->bik", q, k) |
|
|
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = rearrange(v, "b c h w -> b c (h w)") |
|
w_ = rearrange(w_, "b i j -> b j i") |
|
h_ = torch.einsum("bij,bjk->bik", v, w_) |
|
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) |
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
query_dim, |
|
context_dim=None, |
|
heads=8, |
|
dim_head=64, |
|
dropout=0.0, |
|
backend=None, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = zero_module(nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) |
|
)) |
|
self.backend = backend |
|
|
|
self.attn_map_cache = None |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
additional_tokens=None, |
|
n_times_crossframe_attn_in_self=0, |
|
): |
|
h = self.heads |
|
|
|
if additional_tokens is not None: |
|
|
|
n_tokens_to_mask = additional_tokens.shape[1] |
|
|
|
x = torch.cat([additional_tokens, x], dim=1) |
|
|
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
if n_times_crossframe_attn_in_self: |
|
|
|
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 |
|
n_cp = x.shape[0] // n_times_crossframe_attn_in_self |
|
k = repeat( |
|
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp |
|
) |
|
v = repeat( |
|
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp |
|
) |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) |
|
|
|
|
|
|
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
del q, k |
|
|
|
if exists(mask): |
|
mask = rearrange(mask, 'b ... -> b (...)') |
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = repeat(mask, 'b j -> (b h) () j', h=h) |
|
sim.masked_fill_(~mask, max_neg_value) |
|
|
|
|
|
sim = sim.softmax(dim=-1) |
|
|
|
|
|
if self.attn_map_cache is not None: |
|
bh, n, l = sim.shape |
|
size = int(n**0.5) |
|
self.attn_map_cache["size"] = size |
|
self.attn_map_cache["attn_map"] = sim |
|
|
|
out = einsum('b i j, b j d -> b i d', sim, v) |
|
out = rearrange(out, "(b h) n d -> b n (h d)", h=h) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if additional_tokens is not None: |
|
|
|
out = out[:, n_tokens_to_mask:] |
|
return self.to_out(out) |
|
|
|
|
|
class MemoryEfficientCrossAttention(nn.Module): |
|
|
|
def __init__( |
|
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
|
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) |
|
) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
additional_tokens=None, |
|
n_times_crossframe_attn_in_self=0, |
|
): |
|
if additional_tokens is not None: |
|
|
|
n_tokens_to_mask = additional_tokens.shape[1] |
|
|
|
x = torch.cat([additional_tokens, x], dim=1) |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
if n_times_crossframe_attn_in_self: |
|
|
|
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 |
|
|
|
k = repeat( |
|
k[::n_times_crossframe_attn_in_self], |
|
"b ... -> (b n) ...", |
|
n=n_times_crossframe_attn_in_self, |
|
) |
|
v = repeat( |
|
v[::n_times_crossframe_attn_in_self], |
|
"b ... -> (b n) ...", |
|
n=n_times_crossframe_attn_in_self, |
|
) |
|
|
|
b, _, _ = q.shape |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
out = xformers.ops.memory_efficient_attention( |
|
q, k, v, attn_bias=None, op=self.attention_op |
|
) |
|
|
|
|
|
if exists(mask): |
|
raise NotImplementedError |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
if additional_tokens is not None: |
|
|
|
out = out[:, n_tokens_to_mask:] |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, |
|
"softmax-xformers": MemoryEfficientCrossAttention, |
|
} |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
dropout=0.0, |
|
context_dim=None, |
|
add_context_dim=None, |
|
gated_ff=True, |
|
checkpoint=True, |
|
disable_self_attn=False, |
|
attn_mode="softmax", |
|
sdp_backend=None, |
|
): |
|
super().__init__() |
|
assert attn_mode in self.ATTENTION_MODES |
|
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE: |
|
print( |
|
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. " |
|
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}" |
|
) |
|
attn_mode = "softmax" |
|
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE: |
|
print( |
|
"We do not support vanilla attention anymore, as it is too expensive. Sorry." |
|
) |
|
if not XFORMERS_IS_AVAILABLE: |
|
assert ( |
|
False |
|
), "Please install xformers via e.g. 'pip install xformers==0.0.16'" |
|
else: |
|
print("Falling back to xformers efficient attention.") |
|
attn_mode = "softmax-xformers" |
|
attn_cls = self.ATTENTION_MODES[attn_mode] |
|
if version.parse(torch.__version__) >= version.parse("2.0.0"): |
|
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend) |
|
else: |
|
assert sdp_backend is None |
|
self.disable_self_attn = disable_self_attn |
|
self.attn1 = MemoryEfficientCrossAttention( |
|
query_dim=dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
context_dim=context_dim if self.disable_self_attn else None, |
|
backend=sdp_backend, |
|
) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
if context_dim is not None and context_dim > 0: |
|
self.attn2 = attn_cls( |
|
query_dim=dim, |
|
context_dim=context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
backend=sdp_backend, |
|
) |
|
if add_context_dim is not None and add_context_dim > 0: |
|
self.add_attn = attn_cls( |
|
query_dim=dim, |
|
context_dim=add_context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
backend=sdp_backend, |
|
) |
|
self.add_norm = nn.LayerNorm(dim) |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward( |
|
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 |
|
): |
|
kwargs = {"x": x} |
|
|
|
if context is not None: |
|
kwargs.update({"context": context}) |
|
|
|
if additional_tokens is not None: |
|
kwargs.update({"additional_tokens": additional_tokens}) |
|
|
|
if n_times_crossframe_attn_in_self: |
|
kwargs.update( |
|
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self} |
|
) |
|
|
|
return checkpoint( |
|
self._forward, (x, context, add_context), self.parameters(), self.checkpoint |
|
) |
|
|
|
def _forward( |
|
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 |
|
): |
|
x = ( |
|
self.attn1( |
|
self.norm1(x), |
|
context=context if self.disable_self_attn else None, |
|
additional_tokens=additional_tokens, |
|
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self |
|
if not self.disable_self_attn |
|
else 0, |
|
) |
|
+ x |
|
) |
|
if hasattr(self, "attn2"): |
|
x = ( |
|
self.attn2( |
|
self.norm2(x), context=context, additional_tokens=additional_tokens |
|
) |
|
+ x |
|
) |
|
if hasattr(self, "add_attn"): |
|
x = ( |
|
self.add_attn( |
|
self.add_norm(x), context=add_context, additional_tokens=additional_tokens |
|
) |
|
+ x |
|
) |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
|
|
class BasicTransformerSingleLayerBlock(nn.Module): |
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, |
|
"softmax-xformers": MemoryEfficientCrossAttention |
|
|
|
} |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
dropout=0.0, |
|
context_dim=None, |
|
gated_ff=True, |
|
checkpoint=True, |
|
attn_mode="softmax", |
|
): |
|
super().__init__() |
|
assert attn_mode in self.ATTENTION_MODES |
|
attn_cls = self.ATTENTION_MODES[attn_mode] |
|
self.attn1 = attn_cls( |
|
query_dim=dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
context_dim=context_dim, |
|
) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None): |
|
return checkpoint( |
|
self._forward, (x, context), self.parameters(), self.checkpoint |
|
) |
|
|
|
def _forward(self, x, context=None): |
|
x = self.attn1(self.norm1(x), context=context) + x |
|
x = self.ff(self.norm2(x)) + x |
|
return x |
|
|
|
|
|
class SpatialTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
NEW: use_linear for more efficiency instead of the 1x1 convs |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=1, |
|
dropout=0.0, |
|
context_dim=None, |
|
add_context_dim=None, |
|
disable_self_attn=False, |
|
use_linear=False, |
|
attn_type="softmax", |
|
use_checkpoint=True, |
|
|
|
sdp_backend=None, |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
from omegaconf import ListConfig |
|
|
|
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)): |
|
context_dim = [context_dim] |
|
if exists(context_dim) and isinstance(context_dim, list): |
|
if depth != len(context_dim): |
|
|
|
|
|
|
|
|
|
|
|
assert all( |
|
map(lambda x: x == context_dim[0], context_dim) |
|
), "need homogenous context_dim to match depth automatically" |
|
context_dim = depth * [context_dim[0]] |
|
elif context_dim is None: |
|
context_dim = [None] * depth |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = Normalize(in_channels) |
|
if not use_linear: |
|
self.proj_in = nn.Conv2d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
n_heads, |
|
d_head, |
|
dropout=dropout, |
|
context_dim=context_dim[d], |
|
add_context_dim=add_context_dim, |
|
disable_self_attn=disable_self_attn, |
|
attn_mode=attn_type, |
|
checkpoint=use_checkpoint, |
|
sdp_backend=sdp_backend, |
|
) |
|
for d in range(depth) |
|
] |
|
) |
|
if not use_linear: |
|
self.proj_out = zero_module( |
|
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
) |
|
else: |
|
|
|
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None, add_context=None): |
|
|
|
if not isinstance(context, list): |
|
context = [context] |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, "b c h w -> b (h w) c").contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
if i > 0 and len(context) == 1: |
|
i = 0 |
|
x = block(x, context=context[i], add_context=add_context) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
return x + x_in |
|
|
|
|
|
def benchmark_attn(): |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
import torch.nn.functional as F |
|
import torch.utils.benchmark as benchmark |
|
|
|
def benchmark_torch_function_in_microseconds(f, *args, **kwargs): |
|
t0 = benchmark.Timer( |
|
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} |
|
) |
|
return t0.blocked_autorange().mean * 1e6 |
|
|
|
|
|
batch_size = 32 |
|
max_sequence_len = 1024 |
|
num_heads = 32 |
|
embed_dimension = 32 |
|
|
|
dtype = torch.float16 |
|
|
|
query = torch.rand( |
|
batch_size, |
|
num_heads, |
|
max_sequence_len, |
|
embed_dimension, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
key = torch.rand( |
|
batch_size, |
|
num_heads, |
|
max_sequence_len, |
|
embed_dimension, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
value = torch.rand( |
|
batch_size, |
|
num_heads, |
|
max_sequence_len, |
|
embed_dimension, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
print(f"q/k/v shape:", query.shape, key.shape, value.shape) |
|
|
|
|
|
from torch.backends.cuda import SDPBackend, sdp_kernel |
|
|
|
|
|
backend_map = { |
|
SDPBackend.MATH: { |
|
"enable_math": True, |
|
"enable_flash": False, |
|
"enable_mem_efficient": False, |
|
}, |
|
SDPBackend.FLASH_ATTENTION: { |
|
"enable_math": False, |
|
"enable_flash": True, |
|
"enable_mem_efficient": False, |
|
}, |
|
SDPBackend.EFFICIENT_ATTENTION: { |
|
"enable_math": False, |
|
"enable_flash": False, |
|
"enable_mem_efficient": True, |
|
}, |
|
} |
|
|
|
from torch.profiler import ProfilerActivity, profile, record_function |
|
|
|
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA] |
|
|
|
print( |
|
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" |
|
) |
|
with profile( |
|
activities=activities, record_shapes=False, profile_memory=True |
|
) as prof: |
|
with record_function("Default detailed stats"): |
|
for _ in range(25): |
|
o = F.scaled_dot_product_attention(query, key, value) |
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) |
|
|
|
print( |
|
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" |
|
) |
|
with sdp_kernel(**backend_map[SDPBackend.MATH]): |
|
with profile( |
|
activities=activities, record_shapes=False, profile_memory=True |
|
) as prof: |
|
with record_function("Math implmentation stats"): |
|
for _ in range(25): |
|
o = F.scaled_dot_product_attention(query, key, value) |
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) |
|
|
|
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]): |
|
try: |
|
print( |
|
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" |
|
) |
|
except RuntimeError: |
|
print("FlashAttention is not supported. See warnings for reasons.") |
|
with profile( |
|
activities=activities, record_shapes=False, profile_memory=True |
|
) as prof: |
|
with record_function("FlashAttention stats"): |
|
for _ in range(25): |
|
o = F.scaled_dot_product_attention(query, key, value) |
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) |
|
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]): |
|
try: |
|
print( |
|
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" |
|
) |
|
except RuntimeError: |
|
print("EfficientAttention is not supported. See warnings for reasons.") |
|
with profile( |
|
activities=activities, record_shapes=False, profile_memory=True |
|
) as prof: |
|
with record_function("EfficientAttention stats"): |
|
for _ in range(25): |
|
o = F.scaled_dot_product_attention(query, key, value) |
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) |
|
|
|
|
|
def run_model(model, x, context): |
|
return model(x, context) |
|
|
|
|
|
def benchmark_transformer_blocks(): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
import torch.utils.benchmark as benchmark |
|
|
|
def benchmark_torch_function_in_microseconds(f, *args, **kwargs): |
|
t0 = benchmark.Timer( |
|
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} |
|
) |
|
return t0.blocked_autorange().mean * 1e6 |
|
|
|
checkpoint = True |
|
compile = False |
|
|
|
batch_size = 32 |
|
h, w = 64, 64 |
|
context_len = 77 |
|
embed_dimension = 1024 |
|
context_dim = 1024 |
|
d_head = 64 |
|
|
|
transformer_depth = 4 |
|
|
|
n_heads = embed_dimension // d_head |
|
|
|
dtype = torch.float16 |
|
|
|
model_native = SpatialTransformer( |
|
embed_dimension, |
|
n_heads, |
|
d_head, |
|
context_dim=context_dim, |
|
use_linear=True, |
|
use_checkpoint=checkpoint, |
|
attn_type="softmax", |
|
depth=transformer_depth, |
|
sdp_backend=SDPBackend.FLASH_ATTENTION, |
|
).to(device) |
|
model_efficient_attn = SpatialTransformer( |
|
embed_dimension, |
|
n_heads, |
|
d_head, |
|
context_dim=context_dim, |
|
use_linear=True, |
|
depth=transformer_depth, |
|
use_checkpoint=checkpoint, |
|
attn_type="softmax-xformers", |
|
).to(device) |
|
if not checkpoint and compile: |
|
print("compiling models") |
|
model_native = torch.compile(model_native) |
|
model_efficient_attn = torch.compile(model_efficient_attn) |
|
|
|
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype) |
|
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype) |
|
|
|
from torch.profiler import ProfilerActivity, profile, record_function |
|
|
|
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA] |
|
|
|
with torch.autocast("cuda"): |
|
print( |
|
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds" |
|
) |
|
print( |
|
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds" |
|
) |
|
|
|
print(75 * "+") |
|
print("NATIVE") |
|
print(75 * "+") |
|
torch.cuda.reset_peak_memory_stats() |
|
with profile( |
|
activities=activities, record_shapes=False, profile_memory=True |
|
) as prof: |
|
with record_function("NativeAttention stats"): |
|
for _ in range(25): |
|
model_native(x, c) |
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) |
|
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block") |
|
|
|
print(75 * "+") |
|
print("Xformers") |
|
print(75 * "+") |
|
torch.cuda.reset_peak_memory_stats() |
|
with profile( |
|
activities=activities, record_shapes=False, profile_memory=True |
|
) as prof: |
|
with record_function("xformers stats"): |
|
for _ in range(25): |
|
model_efficient_attn(x, c) |
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) |
|
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block") |
|
|
|
|
|
def test01(): |
|
|
|
from ..util import count_params |
|
|
|
conv = nn.Conv2d(3, 32, kernel_size=1).cuda() |
|
print(count_params(conv)) |
|
linear = torch.nn.Linear(3, 32).cuda() |
|
print(count_params(linear)) |
|
|
|
print(conv.weight.shape) |
|
|
|
|
|
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1)) |
|
linear.bias = torch.nn.Parameter(conv.bias) |
|
|
|
print(linear.weight.shape) |
|
|
|
x = torch.randn(11, 3, 64, 64).cuda() |
|
|
|
xr = rearrange(x, "b c h w -> b (h w) c").contiguous() |
|
print(xr.shape) |
|
out_linear = linear(xr) |
|
print(out_linear.mean(), out_linear.shape) |
|
|
|
out_conv = conv(x) |
|
print(out_conv.mean(), out_conv.shape) |
|
print("done with test01.\n") |
|
|
|
|
|
def test02(): |
|
|
|
import time |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
torch.backends.cudnn.benchmark = True |
|
print("testing cosine flash attention...") |
|
DIM = 1024 |
|
SEQLEN = 4096 |
|
BS = 16 |
|
|
|
print(" softmax (vanilla) first...") |
|
model = BasicTransformerBlock( |
|
dim=DIM, |
|
n_heads=16, |
|
d_head=64, |
|
dropout=0.0, |
|
context_dim=None, |
|
attn_mode="softmax", |
|
).cuda() |
|
try: |
|
x = torch.randn(BS, SEQLEN, DIM).cuda() |
|
tic = time.time() |
|
y = model(x) |
|
toc = time.time() |
|
print(y.shape, toc - tic) |
|
except RuntimeError as e: |
|
|
|
print(str(e)) |
|
|
|
print("\n now flash-cosine...") |
|
model = BasicTransformerBlock( |
|
dim=DIM, |
|
n_heads=16, |
|
d_head=64, |
|
dropout=0.0, |
|
context_dim=None, |
|
attn_mode="flash-cosine", |
|
).cuda() |
|
x = torch.randn(BS, SEQLEN, DIM).cuda() |
|
tic = time.time() |
|
y = model(x) |
|
toc = time.time() |
|
print(y.shape, toc - tic) |
|
print("done with test02.\n") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
benchmark_transformer_blocks() |
|
|
|
print("done.") |
|
|