TalkingGaussian / train_face.py
ameerazam08's picture
Upload folder using huggingface_hub
210e8a2 verified
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import random
import torch
from random import randint
from utils.loss_utils import l1_loss, l2_loss, patchify, ssim
from gaussian_renderer import render, render_motion
import sys
from scene import Scene, GaussianModel, MotionNetwork
from utils.general_utils import safe_state
import lpips
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
testing_iterations = [i for i in range(0, opt.iterations + 1, 2000)]
checkpoint_iterations = saving_iterations = [i for i in range(0, opt.iterations + 1, 10000)] + [opt.iterations]
# vars
warm_step = 3000
opt.densify_until_iter = opt.iterations - 1000
bg_iter = opt.iterations # opt.densify_until_iter
lpips_start_iter = opt.densify_until_iter - 2000
motion_stop_iter = bg_iter
mouth_select_iter = bg_iter - 10000
mouth_step = 1 / mouth_select_iter
hair_mask_interval = 7
select_interval = 15
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
motion_net = MotionNetwork(args=dataset).cuda()
motion_optimizer = torch.optim.AdamW(motion_net.get_params(5e-3, 5e-4), betas=(0.9, 0.99), eps=1e-8)
scheduler = torch.optim.lr_scheduler.LambdaLR(motion_optimizer, lambda iter: (0.5 ** (iter / mouth_select_iter)) if iter < mouth_select_iter else 0.1 ** (iter / bg_iter))
lpips_criterion = lpips.LPIPS(net='alex').eval().cuda()
gaussians.training_setup(opt)
if checkpoint:
(model_params, motion_params, motion_optimizer_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
motion_net.load_state_dict(motion_params)
motion_optimizer.load_state_dict(motion_optimizer_params)
bg_color = [0, 1, 0] # [1, 1, 1] # if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), ascii=True, dynamic_ncols=True, desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# find a big mouth
mouth_global_lb = viewpoint_cam.talking_dict['mouth_bound'][0]
mouth_global_ub = viewpoint_cam.talking_dict['mouth_bound'][1]
mouth_global_lb += (mouth_global_ub - mouth_global_lb) * 0.2
mouth_window = (mouth_global_ub - mouth_global_lb) * 0.2
mouth_lb = mouth_global_lb + mouth_step * iteration * (mouth_global_ub - mouth_global_lb)
mouth_ub = mouth_lb + mouth_window
mouth_lb = mouth_lb - mouth_window
au_global_lb = 0
au_global_ub = 1
au_window = 0.3
au_lb = au_global_lb + mouth_step * iteration * (au_global_ub - au_global_lb)
au_ub = au_lb + au_window
au_lb = au_lb - au_window * 0.5
if iteration < warm_step:
if iteration % select_interval == 0:
while viewpoint_cam.talking_dict['mouth_bound'][2] < mouth_lb or viewpoint_cam.talking_dict['mouth_bound'][2] > mouth_ub:
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
if warm_step < iteration < mouth_select_iter:
if iteration % select_interval == 0:
while viewpoint_cam.talking_dict['blink'] < au_lb or viewpoint_cam.talking_dict['blink'] > au_ub:
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
face_mask = torch.as_tensor(viewpoint_cam.talking_dict["face_mask"]).cuda()
hair_mask = torch.as_tensor(viewpoint_cam.talking_dict["hair_mask"]).cuda()
mouth_mask = torch.as_tensor(viewpoint_cam.talking_dict["mouth_mask"]).cuda()
head_mask = face_mask + hair_mask
if iteration > lpips_start_iter:
max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
mouth_mask = (-max_pool(-max_pool(mouth_mask[None].float())))[0].bool()
hair_mask_iter = (warm_step < iteration < lpips_start_iter - 1000) and iteration % hair_mask_interval != 0
if iteration < warm_step:
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
else:
render_pkg = render_motion(viewpoint_cam, gaussians, motion_net, pipe, background, return_attn=True)
image_white, alpha, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["alpha"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
gt_image = viewpoint_cam.original_image.cuda() / 255.0
gt_image_white = gt_image * head_mask + background[:, None, None] * ~head_mask
if iteration > motion_stop_iter:
for param in motion_net.parameters():
param.requires_grad = False
if iteration > bg_iter:
gaussians._xyz.requires_grad = False
gaussians._opacity.requires_grad = False
# gaussians._features_dc.requires_grad = False
# gaussians._features_rest.requires_grad = False
gaussians._scaling.requires_grad = False
gaussians._rotation.requires_grad = False
# Loss
if iteration < bg_iter:
if hair_mask_iter:
image_white[:, hair_mask] = background[:, None]
gt_image_white[:, hair_mask] = background[:, None]
# image_white[:, mouth_mask] = 1
gt_image_white[:, mouth_mask] = background[:, None]
Ll1 = l1_loss(image_white, gt_image_white)
loss = Ll1 + opt.lambda_dssim * (1.0 - ssim(image_white, gt_image_white))
# mouth_alpha_loss = 1e-2 * (alpha[:,mouth_mask]).mean()
# if not torch.isnan(mouth_alpha_loss):
# loss += mouth_alpha_loss
# print(alpha[:,mouth_mask], mouth_mask.sum())
if iteration > warm_step:
loss += 1e-5 * (render_pkg['motion']['d_xyz'].abs()).mean()
loss += 1e-5 * (render_pkg['motion']['d_rot'].abs()).mean()
loss += 1e-5 * (render_pkg['motion']['d_opa'].abs()).mean()
loss += 1e-5 * (render_pkg['motion']['d_scale'].abs()).mean()
loss += 1e-3 * (((1-alpha) * head_mask).mean() + (alpha * ~head_mask).mean())
[xmin, xmax, ymin, ymax] = viewpoint_cam.talking_dict['lips_rect']
loss += 1e-4 * (render_pkg["attn"][1, xmin:xmax, ymin:ymax]).mean()
if not hair_mask_iter:
loss += 1e-4 * (render_pkg["attn"][1][hair_mask]).mean()
loss += 1e-4 * (render_pkg["attn"][0][hair_mask]).mean()
# loss += l2_loss(image_white[:, xmin:xmax, ymin:ymax], image_white[:, xmin:xmax, ymin:ymax])
image_t = image_white.clone()
gt_image_t = gt_image_white.clone()
else:
# with real bg
image = image_white - background[:, None, None] * (1.0 - alpha) + viewpoint_cam.background.cuda() / 255.0 * (1.0 - alpha)
Ll1 = l1_loss(image, gt_image)
loss = Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
image_t = image.clone()
gt_image_t = gt_image.clone()
if iteration > lpips_start_iter:
# mask mouth
[xmin, xmax, ymin, ymax] = viewpoint_cam.talking_dict['lips_rect']
loss += 0.01 * lpips_criterion(image_t.clone()[:, xmin:xmax, ymin:ymax] * 2 - 1, gt_image_t.clone()[:, xmin:xmax, ymin:ymax] * 2 - 1).mean()
image_t[:, xmin:xmax, ymin:ymax] = background[:, None, None]
gt_image_t[:, xmin:xmax, ymin:ymax] = background[:, None, None]
patch_size = random.randint(32, 48) * 2
loss += 0.2 * lpips_criterion(patchify(image_t[None, ...] * 2 - 1, patch_size), patchify(gt_image_t[None, ...] * 2 - 1, patch_size)).mean()
# loss += 0.5 * lpips_criterion(image_t[None, ...] * 2 - 1, gt_image_t[None, ...] * 2 - 1).mean()
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{5}f}", "Mouth": f"{mouth_lb:.{1}f}-{mouth_ub:.{1}f}"}) # , "AU25": f"{au_lb:.{1}f}-{au_ub:.{1}f}"
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, motion_net, render if iteration < warm_step else render_motion, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(str(iteration)+'_face')
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
ckpt = (gaussians.capture(), motion_net.state_dict(), motion_optimizer.state_dict(), iteration)
torch.save(ckpt, scene.model_path + "/chkpnt_face_" + str(iteration) + ".pth")
torch.save(ckpt, scene.model_path + "/chkpnt_face_latest" + ".pth")
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.05 + 0.25 * iteration / opt.densify_until_iter, scene.cameras_extent, size_threshold)
# bg prune
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
from utils.sh_utils import eval_sh
shs_view = gaussians.get_features.transpose(1, 2).view(-1, 3, (gaussians.max_sh_degree+1)**2)
dir_pp = (gaussians.get_xyz - viewpoint_cam.camera_center.repeat(gaussians.get_features.shape[0], 1))
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(gaussians.active_sh_degree, shs_view, dir_pp_normalized)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
bg_color_mask = (colors_precomp[..., 0] < 30/255) * (colors_precomp[..., 1] > 225/255) * (colors_precomp[..., 2] < 30/255)
gaussians.prune_points(bg_color_mask.squeeze())
# Optimizer step
if iteration < opt.iterations:
motion_optimizer.step()
gaussians.optimizer.step()
motion_optimizer.zero_grad()
gaussians.optimizer.zero_grad(set_to_none = True)
scheduler.step()
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, motion_net, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : [scene.getTestCameras()[idx % len(scene.getTestCameras())] for idx in range(5, 100, 5)]},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
if renderFunc is render:
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs)
else:
render_pkg = renderFunc(viewpoint, scene.gaussians, motion_net, return_attn=True, frame_idx=0, *renderArgs)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
alpha = render_pkg["alpha"]
image = image - renderArgs[1][:, None, None] * (1.0 - alpha) + viewpoint.background.cuda() / 255.0 * (1.0 - alpha)
gt_image = torch.clamp(viewpoint.original_image.to("cuda") / 255.0, 0.0, 1.0)
mouth_mask = torch.as_tensor(viewpoint.talking_dict["mouth_mask"]).cuda()
max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
mouth_mask_post = (-max_pool(-max_pool(mouth_mask[None].float())))[0].bool()
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
# tb_writer.add_images(config['name'] + "_view_{}/depth".format(viewpoint.image_name), (render_pkg["depth"] / render_pkg["depth"].max())[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/mouth_mask_post".format(viewpoint.image_name), (~mouth_mask_post * gt_image)[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/mouth_mask".format(viewpoint.image_name), (~mouth_mask[None] * gt_image)[None], global_step=iteration)
if renderFunc is not render:
tb_writer.add_images(config['name'] + "_view_{}/attn_a".format(viewpoint.image_name), (render_pkg["attn"][0] / render_pkg["attn"][0].max())[None, None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/attn_e".format(viewpoint.image_name), (render_pkg["attn"][1] / render_pkg["attn"][1].max())[None, None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")