|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
import torch |
|
from random import randint |
|
from utils.loss_utils import l1_loss, l2_loss, patchify, ssim |
|
from gaussian_renderer import render, render_motion |
|
import sys |
|
from scene import Scene, GaussianModel, MotionNetwork |
|
from utils.general_utils import safe_state |
|
import lpips |
|
import uuid |
|
from tqdm import tqdm |
|
from utils.image_utils import psnr |
|
from argparse import ArgumentParser, Namespace |
|
from arguments import ModelParams, PipelineParams, OptimizationParams |
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
TENSORBOARD_FOUND = True |
|
except ImportError: |
|
TENSORBOARD_FOUND = False |
|
|
|
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from): |
|
testing_iterations = [i for i in range(0, opt.iterations + 1, 2000)] |
|
checkpoint_iterations = saving_iterations = [i for i in range(0, opt.iterations + 1, 10000)] + [opt.iterations] |
|
|
|
|
|
warm_step = 3000 |
|
opt.densify_until_iter = opt.iterations - 1000 |
|
bg_iter = opt.iterations |
|
lpips_start_iter = opt.densify_until_iter - 2000 |
|
motion_stop_iter = bg_iter |
|
mouth_select_iter = bg_iter - 10000 |
|
mouth_step = 1 / mouth_select_iter |
|
hair_mask_interval = 7 |
|
select_interval = 15 |
|
|
|
first_iter = 0 |
|
tb_writer = prepare_output_and_logger(dataset) |
|
gaussians = GaussianModel(dataset.sh_degree) |
|
scene = Scene(dataset, gaussians) |
|
|
|
motion_net = MotionNetwork(args=dataset).cuda() |
|
motion_optimizer = torch.optim.AdamW(motion_net.get_params(5e-3, 5e-4), betas=(0.9, 0.99), eps=1e-8) |
|
scheduler = torch.optim.lr_scheduler.LambdaLR(motion_optimizer, lambda iter: (0.5 ** (iter / mouth_select_iter)) if iter < mouth_select_iter else 0.1 ** (iter / bg_iter)) |
|
|
|
lpips_criterion = lpips.LPIPS(net='alex').eval().cuda() |
|
|
|
gaussians.training_setup(opt) |
|
if checkpoint: |
|
(model_params, motion_params, motion_optimizer_params, first_iter) = torch.load(checkpoint) |
|
gaussians.restore(model_params, opt) |
|
motion_net.load_state_dict(motion_params) |
|
motion_optimizer.load_state_dict(motion_optimizer_params) |
|
|
|
bg_color = [0, 1, 0] |
|
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") |
|
|
|
|
|
iter_start = torch.cuda.Event(enable_timing = True) |
|
iter_end = torch.cuda.Event(enable_timing = True) |
|
|
|
viewpoint_stack = None |
|
ema_loss_for_log = 0.0 |
|
progress_bar = tqdm(range(first_iter, opt.iterations), ascii=True, dynamic_ncols=True, desc="Training progress") |
|
first_iter += 1 |
|
for iteration in range(first_iter, opt.iterations + 1): |
|
|
|
iter_start.record() |
|
|
|
gaussians.update_learning_rate(iteration) |
|
|
|
|
|
if iteration % 1000 == 0: |
|
gaussians.oneupSHdegree() |
|
|
|
|
|
if not viewpoint_stack: |
|
viewpoint_stack = scene.getTrainCameras().copy() |
|
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) |
|
|
|
|
|
mouth_global_lb = viewpoint_cam.talking_dict['mouth_bound'][0] |
|
mouth_global_ub = viewpoint_cam.talking_dict['mouth_bound'][1] |
|
mouth_global_lb += (mouth_global_ub - mouth_global_lb) * 0.2 |
|
mouth_window = (mouth_global_ub - mouth_global_lb) * 0.2 |
|
|
|
mouth_lb = mouth_global_lb + mouth_step * iteration * (mouth_global_ub - mouth_global_lb) |
|
mouth_ub = mouth_lb + mouth_window |
|
mouth_lb = mouth_lb - mouth_window |
|
|
|
|
|
au_global_lb = 0 |
|
au_global_ub = 1 |
|
au_window = 0.3 |
|
|
|
au_lb = au_global_lb + mouth_step * iteration * (au_global_ub - au_global_lb) |
|
au_ub = au_lb + au_window |
|
au_lb = au_lb - au_window * 0.5 |
|
|
|
|
|
if iteration < warm_step: |
|
if iteration % select_interval == 0: |
|
while viewpoint_cam.talking_dict['mouth_bound'][2] < mouth_lb or viewpoint_cam.talking_dict['mouth_bound'][2] > mouth_ub: |
|
if not viewpoint_stack: |
|
viewpoint_stack = scene.getTrainCameras().copy() |
|
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) |
|
|
|
|
|
if warm_step < iteration < mouth_select_iter: |
|
|
|
if iteration % select_interval == 0: |
|
while viewpoint_cam.talking_dict['blink'] < au_lb or viewpoint_cam.talking_dict['blink'] > au_ub: |
|
if not viewpoint_stack: |
|
viewpoint_stack = scene.getTrainCameras().copy() |
|
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) |
|
|
|
|
|
|
|
|
|
if (iteration - 1) == debug_from: |
|
pipe.debug = True |
|
|
|
face_mask = torch.as_tensor(viewpoint_cam.talking_dict["face_mask"]).cuda() |
|
hair_mask = torch.as_tensor(viewpoint_cam.talking_dict["hair_mask"]).cuda() |
|
mouth_mask = torch.as_tensor(viewpoint_cam.talking_dict["mouth_mask"]).cuda() |
|
head_mask = face_mask + hair_mask |
|
|
|
if iteration > lpips_start_iter: |
|
max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1) |
|
mouth_mask = (-max_pool(-max_pool(mouth_mask[None].float())))[0].bool() |
|
|
|
|
|
hair_mask_iter = (warm_step < iteration < lpips_start_iter - 1000) and iteration % hair_mask_interval != 0 |
|
|
|
if iteration < warm_step: |
|
render_pkg = render(viewpoint_cam, gaussians, pipe, background) |
|
else: |
|
render_pkg = render_motion(viewpoint_cam, gaussians, motion_net, pipe, background, return_attn=True) |
|
|
|
image_white, alpha, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["alpha"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] |
|
|
|
gt_image = viewpoint_cam.original_image.cuda() / 255.0 |
|
gt_image_white = gt_image * head_mask + background[:, None, None] * ~head_mask |
|
|
|
if iteration > motion_stop_iter: |
|
for param in motion_net.parameters(): |
|
param.requires_grad = False |
|
if iteration > bg_iter: |
|
gaussians._xyz.requires_grad = False |
|
gaussians._opacity.requires_grad = False |
|
|
|
|
|
gaussians._scaling.requires_grad = False |
|
gaussians._rotation.requires_grad = False |
|
|
|
|
|
if iteration < bg_iter: |
|
if hair_mask_iter: |
|
image_white[:, hair_mask] = background[:, None] |
|
gt_image_white[:, hair_mask] = background[:, None] |
|
|
|
|
|
gt_image_white[:, mouth_mask] = background[:, None] |
|
|
|
Ll1 = l1_loss(image_white, gt_image_white) |
|
loss = Ll1 + opt.lambda_dssim * (1.0 - ssim(image_white, gt_image_white)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if iteration > warm_step: |
|
loss += 1e-5 * (render_pkg['motion']['d_xyz'].abs()).mean() |
|
loss += 1e-5 * (render_pkg['motion']['d_rot'].abs()).mean() |
|
loss += 1e-5 * (render_pkg['motion']['d_opa'].abs()).mean() |
|
loss += 1e-5 * (render_pkg['motion']['d_scale'].abs()).mean() |
|
|
|
loss += 1e-3 * (((1-alpha) * head_mask).mean() + (alpha * ~head_mask).mean()) |
|
|
|
|
|
[xmin, xmax, ymin, ymax] = viewpoint_cam.talking_dict['lips_rect'] |
|
loss += 1e-4 * (render_pkg["attn"][1, xmin:xmax, ymin:ymax]).mean() |
|
if not hair_mask_iter: |
|
loss += 1e-4 * (render_pkg["attn"][1][hair_mask]).mean() |
|
loss += 1e-4 * (render_pkg["attn"][0][hair_mask]).mean() |
|
|
|
|
|
|
|
image_t = image_white.clone() |
|
gt_image_t = gt_image_white.clone() |
|
|
|
else: |
|
|
|
image = image_white - background[:, None, None] * (1.0 - alpha) + viewpoint_cam.background.cuda() / 255.0 * (1.0 - alpha) |
|
|
|
Ll1 = l1_loss(image, gt_image) |
|
loss = Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)) |
|
|
|
image_t = image.clone() |
|
gt_image_t = gt_image.clone() |
|
|
|
if iteration > lpips_start_iter: |
|
|
|
[xmin, xmax, ymin, ymax] = viewpoint_cam.talking_dict['lips_rect'] |
|
loss += 0.01 * lpips_criterion(image_t.clone()[:, xmin:xmax, ymin:ymax] * 2 - 1, gt_image_t.clone()[:, xmin:xmax, ymin:ymax] * 2 - 1).mean() |
|
|
|
image_t[:, xmin:xmax, ymin:ymax] = background[:, None, None] |
|
gt_image_t[:, xmin:xmax, ymin:ymax] = background[:, None, None] |
|
|
|
patch_size = random.randint(32, 48) * 2 |
|
loss += 0.2 * lpips_criterion(patchify(image_t[None, ...] * 2 - 1, patch_size), patchify(gt_image_t[None, ...] * 2 - 1, patch_size)).mean() |
|
|
|
|
|
|
|
loss.backward() |
|
|
|
iter_end.record() |
|
|
|
with torch.no_grad(): |
|
|
|
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log |
|
if iteration % 10 == 0: |
|
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{5}f}", "Mouth": f"{mouth_lb:.{1}f}-{mouth_ub:.{1}f}"}) |
|
progress_bar.update(10) |
|
if iteration == opt.iterations: |
|
progress_bar.close() |
|
|
|
|
|
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, motion_net, render if iteration < warm_step else render_motion, (pipe, background)) |
|
if (iteration in saving_iterations): |
|
print("\n[ITER {}] Saving Gaussians".format(iteration)) |
|
scene.save(str(iteration)+'_face') |
|
|
|
if (iteration in checkpoint_iterations): |
|
print("\n[ITER {}] Saving Checkpoint".format(iteration)) |
|
ckpt = (gaussians.capture(), motion_net.state_dict(), motion_optimizer.state_dict(), iteration) |
|
torch.save(ckpt, scene.model_path + "/chkpnt_face_" + str(iteration) + ".pth") |
|
torch.save(ckpt, scene.model_path + "/chkpnt_face_latest" + ".pth") |
|
|
|
|
|
|
|
if iteration < opt.densify_until_iter: |
|
|
|
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter]) |
|
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter) |
|
|
|
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0: |
|
size_threshold = 20 if iteration > opt.opacity_reset_interval else None |
|
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.05 + 0.25 * iteration / opt.densify_until_iter, scene.cameras_extent, size_threshold) |
|
|
|
|
|
|
|
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0: |
|
from utils.sh_utils import eval_sh |
|
|
|
shs_view = gaussians.get_features.transpose(1, 2).view(-1, 3, (gaussians.max_sh_degree+1)**2) |
|
dir_pp = (gaussians.get_xyz - viewpoint_cam.camera_center.repeat(gaussians.get_features.shape[0], 1)) |
|
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True) |
|
sh2rgb = eval_sh(gaussians.active_sh_degree, shs_view, dir_pp_normalized) |
|
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) |
|
|
|
bg_color_mask = (colors_precomp[..., 0] < 30/255) * (colors_precomp[..., 1] > 225/255) * (colors_precomp[..., 2] < 30/255) |
|
gaussians.prune_points(bg_color_mask.squeeze()) |
|
|
|
|
|
|
|
if iteration < opt.iterations: |
|
motion_optimizer.step() |
|
gaussians.optimizer.step() |
|
|
|
motion_optimizer.zero_grad() |
|
gaussians.optimizer.zero_grad(set_to_none = True) |
|
|
|
scheduler.step() |
|
|
|
|
|
|
|
def prepare_output_and_logger(args): |
|
if not args.model_path: |
|
if os.getenv('OAR_JOB_ID'): |
|
unique_str=os.getenv('OAR_JOB_ID') |
|
else: |
|
unique_str = str(uuid.uuid4()) |
|
args.model_path = os.path.join("./output/", unique_str[0:10]) |
|
|
|
|
|
print("Output folder: {}".format(args.model_path)) |
|
os.makedirs(args.model_path, exist_ok = True) |
|
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f: |
|
cfg_log_f.write(str(Namespace(**vars(args)))) |
|
|
|
|
|
tb_writer = None |
|
if TENSORBOARD_FOUND: |
|
tb_writer = SummaryWriter(args.model_path) |
|
else: |
|
print("Tensorboard not available: not logging progress") |
|
return tb_writer |
|
|
|
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, motion_net, renderFunc, renderArgs): |
|
if tb_writer: |
|
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration) |
|
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration) |
|
tb_writer.add_scalar('iter_time', elapsed, iteration) |
|
|
|
|
|
if iteration in testing_iterations: |
|
torch.cuda.empty_cache() |
|
validation_configs = ({'name': 'test', 'cameras' : [scene.getTestCameras()[idx % len(scene.getTestCameras())] for idx in range(5, 100, 5)]}, |
|
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]}) |
|
|
|
for config in validation_configs: |
|
if config['cameras'] and len(config['cameras']) > 0: |
|
l1_test = 0.0 |
|
psnr_test = 0.0 |
|
for idx, viewpoint in enumerate(config['cameras']): |
|
|
|
if renderFunc is render: |
|
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs) |
|
else: |
|
render_pkg = renderFunc(viewpoint, scene.gaussians, motion_net, return_attn=True, frame_idx=0, *renderArgs) |
|
|
|
image = torch.clamp(render_pkg["render"], 0.0, 1.0) |
|
alpha = render_pkg["alpha"] |
|
image = image - renderArgs[1][:, None, None] * (1.0 - alpha) + viewpoint.background.cuda() / 255.0 * (1.0 - alpha) |
|
gt_image = torch.clamp(viewpoint.original_image.to("cuda") / 255.0, 0.0, 1.0) |
|
|
|
mouth_mask = torch.as_tensor(viewpoint.talking_dict["mouth_mask"]).cuda() |
|
max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1) |
|
mouth_mask_post = (-max_pool(-max_pool(mouth_mask[None].float())))[0].bool() |
|
|
|
if tb_writer and (idx < 5): |
|
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration) |
|
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration) |
|
|
|
tb_writer.add_images(config['name'] + "_view_{}/mouth_mask_post".format(viewpoint.image_name), (~mouth_mask_post * gt_image)[None], global_step=iteration) |
|
tb_writer.add_images(config['name'] + "_view_{}/mouth_mask".format(viewpoint.image_name), (~mouth_mask[None] * gt_image)[None], global_step=iteration) |
|
|
|
if renderFunc is not render: |
|
tb_writer.add_images(config['name'] + "_view_{}/attn_a".format(viewpoint.image_name), (render_pkg["attn"][0] / render_pkg["attn"][0].max())[None, None], global_step=iteration) |
|
tb_writer.add_images(config['name'] + "_view_{}/attn_e".format(viewpoint.image_name), (render_pkg["attn"][1] / render_pkg["attn"][1].max())[None, None], global_step=iteration) |
|
|
|
l1_test += l1_loss(image, gt_image).mean().double() |
|
psnr_test += psnr(image, gt_image).mean().double() |
|
psnr_test /= len(config['cameras']) |
|
l1_test /= len(config['cameras']) |
|
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test)) |
|
if tb_writer: |
|
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration) |
|
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration) |
|
|
|
if tb_writer: |
|
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration) |
|
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration) |
|
torch.cuda.empty_cache() |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = ArgumentParser(description="Training script parameters") |
|
lp = ModelParams(parser) |
|
op = OptimizationParams(parser) |
|
pp = PipelineParams(parser) |
|
parser.add_argument('--ip', type=str, default="127.0.0.1") |
|
parser.add_argument('--port', type=int, default=6009) |
|
parser.add_argument('--debug_from', type=int, default=-1) |
|
parser.add_argument('--detect_anomaly', action='store_true', default=False) |
|
parser.add_argument("--test_iterations", nargs="+", type=int, default=[]) |
|
parser.add_argument("--save_iterations", nargs="+", type=int, default=[]) |
|
parser.add_argument("--quiet", action="store_true") |
|
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[]) |
|
parser.add_argument("--start_checkpoint", type=str, default = None) |
|
args = parser.parse_args(sys.argv[1:]) |
|
args.save_iterations.append(args.iterations) |
|
|
|
print("Optimizing " + args.model_path) |
|
|
|
|
|
safe_state(args.quiet) |
|
|
|
|
|
torch.autograd.set_detect_anomaly(args.detect_anomaly) |
|
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from) |
|
|
|
|
|
print("\nTraining complete.") |
|
|