|
import torch |
|
import torch.nn as nn |
|
|
|
import torchgeometry as tgm |
|
|
|
__all__ = [ |
|
|
|
"pi", |
|
"rad2deg", |
|
"deg2rad", |
|
"convert_points_from_homogeneous", |
|
"convert_points_to_homogeneous", |
|
"angle_axis_to_rotation_matrix", |
|
"rotation_matrix_to_angle_axis", |
|
"rotation_matrix_to_quaternion", |
|
"quaternion_to_angle_axis", |
|
"angle_axis_to_quaternion", |
|
"rtvec_to_pose", |
|
|
|
"RadToDeg", |
|
"DegToRad", |
|
"ConvertPointsFromHomogeneous", |
|
"ConvertPointsToHomogeneous", |
|
] |
|
|
|
|
|
"""Constant with number pi |
|
""" |
|
pi = torch.Tensor([3.14159265358979323846]) |
|
|
|
|
|
def rad2deg(tensor): |
|
r"""Function that converts angles from radians to degrees. |
|
|
|
See :class:`~torchgeometry.RadToDeg` for details. |
|
|
|
Args: |
|
tensor (Tensor): Tensor of arbitrary shape. |
|
|
|
Returns: |
|
Tensor: Tensor with same shape as input. |
|
|
|
Example: |
|
>>> input = tgm.pi * torch.rand(1, 3, 3) |
|
>>> output = tgm.rad2deg(input) |
|
""" |
|
if not torch.is_tensor(tensor): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}" |
|
.format(type(tensor))) |
|
|
|
return 180. * tensor / pi.to(tensor.device).type(tensor.dtype) |
|
|
|
|
|
def deg2rad(tensor): |
|
r"""Function that converts angles from degrees to radians. |
|
|
|
See :class:`~torchgeometry.DegToRad` for details. |
|
|
|
Args: |
|
tensor (Tensor): Tensor of arbitrary shape. |
|
|
|
Returns: |
|
Tensor: Tensor with same shape as input. |
|
|
|
Examples:: |
|
|
|
>>> input = 360. * torch.rand(1, 3, 3) |
|
>>> output = tgm.deg2rad(input) |
|
""" |
|
if not torch.is_tensor(tensor): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}" |
|
.format(type(tensor))) |
|
|
|
return tensor * pi.to(tensor.device).type(tensor.dtype) / 180. |
|
|
|
|
|
def convert_points_from_homogeneous(points): |
|
r"""Function that converts points from homogeneous to Euclidean space. |
|
|
|
See :class:`~torchgeometry.ConvertPointsFromHomogeneous` for details. |
|
|
|
Examples:: |
|
|
|
>>> input = torch.rand(2, 4, 3) # BxNx3 |
|
>>> output = tgm.convert_points_from_homogeneous(input) # BxNx2 |
|
""" |
|
if not torch.is_tensor(points): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(points))) |
|
if len(points.shape) < 2: |
|
raise ValueError("Input must be at least a 2D tensor. Got {}".format( |
|
points.shape)) |
|
|
|
return points[..., :-1] / points[..., -1:] |
|
|
|
|
|
def convert_points_to_homogeneous(points): |
|
r"""Function that converts points from Euclidean to homogeneous space. |
|
|
|
See :class:`~torchgeometry.ConvertPointsToHomogeneous` for details. |
|
|
|
Examples:: |
|
|
|
>>> input = torch.rand(2, 4, 3) # BxNx3 |
|
>>> output = tgm.convert_points_to_homogeneous(input) # BxNx4 |
|
""" |
|
if not torch.is_tensor(points): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(points))) |
|
if len(points.shape) < 2: |
|
raise ValueError("Input must be at least a 2D tensor. Got {}".format( |
|
points.shape)) |
|
|
|
return nn.functional.pad(points, (0, 1), "constant", 1.0) |
|
|
|
|
|
def angle_axis_to_rotation_matrix(angle_axis): |
|
"""Convert 3d vector of axis-angle rotation to 4x4 rotation matrix |
|
|
|
Args: |
|
angle_axis (Tensor): tensor of 3d vector of axis-angle rotations. |
|
|
|
Returns: |
|
Tensor: tensor of 4x4 rotation matrices. |
|
|
|
Shape: |
|
- Input: :math:`(N, 3)` |
|
- Output: :math:`(N, 4, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(1, 3) # Nx3 |
|
>>> output = tgm.angle_axis_to_rotation_matrix(input) # Nx4x4 |
|
""" |
|
def _compute_rotation_matrix(angle_axis, theta2, eps=1e-6): |
|
|
|
|
|
|
|
k_one = 1.0 |
|
theta = torch.sqrt(theta2) |
|
wxyz = angle_axis / (theta + eps) |
|
wx, wy, wz = torch.chunk(wxyz, 3, dim=1) |
|
cos_theta = torch.cos(theta) |
|
sin_theta = torch.sin(theta) |
|
|
|
r00 = cos_theta + wx * wx * (k_one - cos_theta) |
|
r10 = wz * sin_theta + wx * wy * (k_one - cos_theta) |
|
r20 = -wy * sin_theta + wx * wz * (k_one - cos_theta) |
|
r01 = wx * wy * (k_one - cos_theta) - wz * sin_theta |
|
r11 = cos_theta + wy * wy * (k_one - cos_theta) |
|
r21 = wx * sin_theta + wy * wz * (k_one - cos_theta) |
|
r02 = wy * sin_theta + wx * wz * (k_one - cos_theta) |
|
r12 = -wx * sin_theta + wy * wz * (k_one - cos_theta) |
|
r22 = cos_theta + wz * wz * (k_one - cos_theta) |
|
rotation_matrix = torch.cat( |
|
[r00, r01, r02, r10, r11, r12, r20, r21, r22], dim=1) |
|
return rotation_matrix.view(-1, 3, 3) |
|
|
|
def _compute_rotation_matrix_taylor(angle_axis): |
|
rx, ry, rz = torch.chunk(angle_axis, 3, dim=1) |
|
k_one = torch.ones_like(rx) |
|
rotation_matrix = torch.cat( |
|
[k_one, -rz, ry, rz, k_one, -rx, -ry, rx, k_one], dim=1) |
|
return rotation_matrix.view(-1, 3, 3) |
|
|
|
|
|
|
|
_angle_axis = torch.unsqueeze(angle_axis, dim=1) |
|
theta2 = torch.matmul(_angle_axis, _angle_axis.transpose(1, 2)) |
|
theta2 = torch.squeeze(theta2, dim=1) |
|
|
|
|
|
rotation_matrix_normal = _compute_rotation_matrix(angle_axis, theta2) |
|
rotation_matrix_taylor = _compute_rotation_matrix_taylor(angle_axis) |
|
|
|
|
|
eps = 1e-6 |
|
mask = (theta2 > eps).view(-1, 1, 1).to(theta2.device) |
|
mask_pos = (mask).type_as(theta2) |
|
mask_neg = (mask == False).type_as(theta2) |
|
|
|
|
|
batch_size = angle_axis.shape[0] |
|
rotation_matrix = torch.eye(4).to(angle_axis.device).type_as(angle_axis) |
|
rotation_matrix = rotation_matrix.view(1, 4, 4).repeat(batch_size, 1, 1) |
|
|
|
rotation_matrix[..., :3, :3] = \ |
|
mask_pos * rotation_matrix_normal + mask_neg * rotation_matrix_taylor |
|
return rotation_matrix |
|
|
|
|
|
def rtvec_to_pose(rtvec): |
|
""" |
|
Convert axis-angle rotation and translation vector to 4x4 pose matrix |
|
|
|
Args: |
|
rtvec (Tensor): Rodrigues vector transformations |
|
|
|
Returns: |
|
Tensor: transformation matrices |
|
|
|
Shape: |
|
- Input: :math:`(N, 6)` |
|
- Output: :math:`(N, 4, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(3, 6) # Nx6 |
|
>>> output = tgm.rtvec_to_pose(input) # Nx4x4 |
|
""" |
|
assert rtvec.shape[-1] == 6, 'rtvec=[rx, ry, rz, tx, ty, tz]' |
|
pose = angle_axis_to_rotation_matrix(rtvec[..., :3]) |
|
pose[..., :3, 3] = rtvec[..., 3:] |
|
return pose |
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix): |
|
"""Convert 3x4 rotation matrix to Rodrigues vector |
|
|
|
Args: |
|
rotation_matrix (Tensor): rotation matrix. |
|
|
|
Returns: |
|
Tensor: Rodrigues vector transformation. |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 3)` |
|
|
|
Example: |
|
>>> input = torch.rand(2, 3, 4) # Nx4x4 |
|
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 |
|
""" |
|
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
return quaternion_to_angle_axis(quaternion) |
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
"""Convert 3x4 rotation matrix to 4d quaternion vector |
|
|
|
This algorithm is based on algorithm described in |
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
|
Args: |
|
rotation_matrix (Tensor): the rotation matrix to convert. |
|
|
|
Return: |
|
Tensor: the rotation in quaternion |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(4, 3, 4) # Nx3x4 |
|
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 |
|
""" |
|
if not torch.is_tensor(rotation_matrix): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(rotation_matrix))) |
|
|
|
if len(rotation_matrix.shape) > 3: |
|
raise ValueError( |
|
"Input size must be a three dimensional tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
if not rotation_matrix.shape[-2:] == (3, 4): |
|
raise ValueError( |
|
"Input size must be a N x 3 x 4 tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
|
|
rmat_t = torch.transpose(rotation_matrix, 1, 2) |
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) |
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], |
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) |
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], |
|
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) |
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], |
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) |
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
mask_c0 = mask_d2 * mask_d0_d1 |
|
mask_c1 = mask_d2 * ~(mask_d0_d1) |
|
mask_c2 = ~(mask_d2) * mask_d0_nd1 |
|
mask_c3 = ~(mask_d2) * ~(mask_d0_nd1) |
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + |
|
t2_rep * mask_c2 + t3_rep * mask_c3) |
|
q *= 0.5 |
|
return q |
|
|
|
|
|
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: |
|
"""Convert quaternion vector to angle axis of rotation. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
quaternion (torch.Tensor): tensor with quaternions. |
|
|
|
Return: |
|
torch.Tensor: tensor with angle axis of rotation. |
|
|
|
Shape: |
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 3)` |
|
|
|
Example: |
|
>>> quaternion = torch.rand(2, 4) # Nx4 |
|
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 |
|
""" |
|
if not torch.is_tensor(quaternion): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(quaternion))) |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}" |
|
.format(quaternion.shape)) |
|
|
|
q1: torch.Tensor = quaternion[..., 1] |
|
q2: torch.Tensor = quaternion[..., 2] |
|
q3: torch.Tensor = quaternion[..., 3] |
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
cos_theta: torch.Tensor = quaternion[..., 0] |
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
cos_theta < 0.0, |
|
torch.atan2(-sin_theta, -cos_theta), |
|
torch.atan2(sin_theta, cos_theta)) |
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) |
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] |
|
angle_axis[..., 0] += q1 * k |
|
angle_axis[..., 1] += q2 * k |
|
angle_axis[..., 2] += q3 * k |
|
return angle_axis |
|
|
|
|
|
|
|
|
|
|
|
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor: |
|
"""Convert an angle axis to a quaternion. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
angle_axis (torch.Tensor): tensor with angle axis. |
|
|
|
Return: |
|
torch.Tensor: tensor with quaternion. |
|
|
|
Shape: |
|
- Input: :math:`(*, 3)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 4)` |
|
|
|
Example: |
|
>>> angle_axis = torch.rand(2, 4) # Nx4 |
|
>>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3 |
|
""" |
|
if not torch.is_tensor(angle_axis): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(angle_axis))) |
|
|
|
if not angle_axis.shape[-1] == 3: |
|
raise ValueError("Input must be a tensor of shape Nx3 or 3. Got {}" |
|
.format(angle_axis.shape)) |
|
|
|
a0: torch.Tensor = angle_axis[..., 0:1] |
|
a1: torch.Tensor = angle_axis[..., 1:2] |
|
a2: torch.Tensor = angle_axis[..., 2:3] |
|
theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2 |
|
|
|
theta: torch.Tensor = torch.sqrt(theta_squared) |
|
half_theta: torch.Tensor = theta * 0.5 |
|
|
|
mask: torch.Tensor = theta_squared > 0.0 |
|
ones: torch.Tensor = torch.ones_like(half_theta) |
|
|
|
k_neg: torch.Tensor = 0.5 * ones |
|
k_pos: torch.Tensor = torch.sin(half_theta) / theta |
|
k: torch.Tensor = torch.where(mask, k_pos, k_neg) |
|
w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) |
|
|
|
quaternion: torch.Tensor = torch.zeros_like(angle_axis) |
|
quaternion[..., 0:1] += a0 * k |
|
quaternion[..., 1:2] += a1 * k |
|
quaternion[..., 2:3] += a2 * k |
|
return torch.cat([w, quaternion], dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RadToDeg(nn.Module): |
|
r"""Creates an object that converts angles from radians to degrees. |
|
|
|
Args: |
|
tensor (Tensor): Tensor of arbitrary shape. |
|
|
|
Returns: |
|
Tensor: Tensor with same shape as input. |
|
|
|
Examples:: |
|
|
|
>>> input = tgm.pi * torch.rand(1, 3, 3) |
|
>>> output = tgm.RadToDeg()(input) |
|
""" |
|
|
|
def __init__(self): |
|
super(RadToDeg, self).__init__() |
|
|
|
def forward(self, input): |
|
return rad2deg(input) |
|
|
|
|
|
class DegToRad(nn.Module): |
|
r"""Function that converts angles from degrees to radians. |
|
|
|
Args: |
|
tensor (Tensor): Tensor of arbitrary shape. |
|
|
|
Returns: |
|
Tensor: Tensor with same shape as input. |
|
|
|
Examples:: |
|
|
|
>>> input = 360. * torch.rand(1, 3, 3) |
|
>>> output = tgm.DegToRad()(input) |
|
""" |
|
|
|
def __init__(self): |
|
super(DegToRad, self).__init__() |
|
|
|
def forward(self, input): |
|
return deg2rad(input) |
|
|
|
|
|
class ConvertPointsFromHomogeneous(nn.Module): |
|
r"""Creates a transformation that converts points from homogeneous to |
|
Euclidean space. |
|
|
|
Args: |
|
points (Tensor): tensor of N-dimensional points. |
|
|
|
Returns: |
|
Tensor: tensor of N-1-dimensional points. |
|
|
|
Shape: |
|
- Input: :math:`(B, D, N)` or :math:`(D, N)` |
|
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)` |
|
|
|
Examples:: |
|
|
|
>>> input = torch.rand(2, 4, 3) # BxNx3 |
|
>>> transform = tgm.ConvertPointsFromHomogeneous() |
|
>>> output = transform(input) # BxNx2 |
|
""" |
|
|
|
def __init__(self): |
|
super(ConvertPointsFromHomogeneous, self).__init__() |
|
|
|
def forward(self, input): |
|
return convert_points_from_homogeneous(input) |
|
|
|
|
|
class ConvertPointsToHomogeneous(nn.Module): |
|
r"""Creates a transformation to convert points from Euclidean to |
|
homogeneous space. |
|
|
|
Args: |
|
points (Tensor): tensor of N-dimensional points. |
|
|
|
Returns: |
|
Tensor: tensor of N+1-dimensional points. |
|
|
|
Shape: |
|
- Input: :math:`(B, D, N)` or :math:`(D, N)` |
|
- Output: :math:`(B, D, N + 1)` or :math:`(D, N + 1)` |
|
|
|
Examples:: |
|
|
|
>>> input = torch.rand(2, 4, 3) # BxNx3 |
|
>>> transform = tgm.ConvertPointsToHomogeneous() |
|
>>> output = transform(input) # BxNx4 |
|
""" |
|
|
|
def __init__(self): |
|
super(ConvertPointsToHomogeneous, self).__init__() |
|
|
|
def forward(self, input): |
|
return convert_points_to_homogeneous(input) |
|
|