|
import math |
|
import torch |
|
from typing import Optional, Tuple |
|
from torch import nn |
|
from torch.nn import Parameter, Linear |
|
from torch.cuda.amp import autocast |
|
from modules.commons.layers import LayerNorm, Embedding |
|
from modules.commons.transformer import TransformerFFNLayer, MultiheadAttention |
|
from utils.nn.seq_utils import get_incremental_state, set_incremental_state, softmax, make_positions |
|
import torch.nn.functional as F |
|
|
|
DEFAULT_MAX_SOURCE_POSITIONS = 3000 |
|
DEFAULT_MAX_TARGET_POSITIONS = 3000 |
|
|
|
|
|
class SinusoidalPositionalEmbedding(nn.Module): |
|
"""This module produces sinusoidal positional embeddings of any length. |
|
|
|
Padding symbols are ignored. |
|
""" |
|
|
|
def __init__(self, embedding_dim, padding_idx, init_size=1024): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.padding_idx = padding_idx |
|
self.weights = SinusoidalPositionalEmbedding.get_embedding( |
|
init_size, |
|
embedding_dim, |
|
padding_idx, |
|
) |
|
self.register_buffer('_float_tensor', torch.FloatTensor(1)) |
|
|
|
@staticmethod |
|
def get_embedding(num_embeddings, embedding_dim, padding_idx=None): |
|
"""Build sinusoidal embeddings. |
|
|
|
This matches the implementation in tensor2tensor, but differs slightly |
|
from the description in Section 3.5 of "Attention Is All You Need". |
|
""" |
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) |
|
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) |
|
if embedding_dim % 2 == 1: |
|
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) |
|
if padding_idx is not None: |
|
emb[padding_idx, :] = 0 |
|
return emb |
|
|
|
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
bsz, seq_len = input.shape[:2] |
|
max_pos = self.padding_idx + 1 + seq_len |
|
if self.weights is None or max_pos > self.weights.size(0): |
|
|
|
self.weights = SinusoidalPositionalEmbedding.get_embedding( |
|
max_pos, |
|
self.embedding_dim, |
|
self.padding_idx, |
|
) |
|
self.weights = self.weights.to(self._float_tensor) |
|
|
|
if incremental_state is not None: |
|
|
|
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len |
|
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) |
|
|
|
positions = make_positions(input, self.padding_idx) if positions is None else positions |
|
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() |
|
|
|
def max_positions(self): |
|
"""Maximum number of supported positions.""" |
|
return int(1e5) |
|
|
|
|
|
class RotaryEmbeddings(nn.Module): |
|
cos: torch.Tensor |
|
sin: torch.Tensor |
|
theta: torch.Tensor |
|
|
|
def __init__( |
|
self, |
|
width: int, |
|
*, |
|
seq_len: int = 4000, |
|
base: int = 10000, |
|
device: Optional[torch.device] = None, |
|
): |
|
"""Rotary embeddings (Su et al., 2021) layer. The rotary embedding |
|
will be precomputed for up to 'seq _len' positions. The embedding |
|
will be recomputed when a longer sequence is found in the input. |
|
|
|
:param width: |
|
Rotary embedding dimensionality, must be even. |
|
:param seq_len: |
|
Number of positons to initially precompute. |
|
:param base: |
|
The base used for Θ_i, determines the cycle length of the |
|
embeddings. |
|
:param device: Device on which the module is to be initialized. |
|
""" |
|
super().__init__() |
|
|
|
if width % 2: |
|
raise ValueError(f"Width of rotary embeddings must be even, was: {width}") |
|
|
|
|
|
|
|
if device is not None and device.type == "meta": |
|
device = None |
|
|
|
theta = torch.pow( |
|
base, -torch.arange(0, width, 2, dtype=torch.float, device=device) / width |
|
) |
|
self.register_buffer("theta", theta, persistent=False) |
|
|
|
self._create_rotary_embed(width=width, length=seq_len) |
|
|
|
def _create_rotary_embed(self, *, width: int, length: int): |
|
|
|
position = torch.arange(length, device=self.theta.device).unsqueeze(1) |
|
m_theta = position * self.theta.unsqueeze(0) |
|
|
|
|
|
|
|
m_theta = torch.cat([m_theta, m_theta], dim=-1) |
|
|
|
re_cos = m_theta.cos().view([length, width]) |
|
re_sin = m_theta.sin().view([length, width]) |
|
|
|
self.register_buffer("cos", re_cos, persistent=False) |
|
self.register_buffer("sin", re_sin, persistent=False) |
|
|
|
def _rotate(self, input: torch.Tensor): |
|
"""Rotate the input tensor by half of its innermost width. |
|
|
|
input (Tensor): array to rotate. |
|
RETURNS (Tensor): rotated array. |
|
|
|
Shapes: |
|
input - (..., width) |
|
output - (..., width) |
|
""" |
|
half_idx = input.shape[-1] // 2 |
|
input_1 = -input[..., half_idx:] |
|
input_2 = input[..., :half_idx] |
|
return torch.cat([input_1, input_2], dim=-1) |
|
|
|
def forward(self, input: torch.Tensor, *, positions: Optional[torch.Tensor] = None): |
|
""" |
|
Apply rotary embeddings to an array. |
|
|
|
:param input: Array to apply the rotary embeddings to. |
|
:param positions: positions of the inputs. If no positions are |
|
provided, they are assumed to be [0, seq_len). |
|
:return: Array with the rotary embeddings applied. |
|
|
|
Shapes: |
|
input - (batch_size, num_heads, seq_len, width_per_head) |
|
positions - (batch_size, seq_len) |
|
output - (batch_size, num_heads, seq_len, width_per_head) |
|
""" |
|
batch_size, _, seq_len, width = input.shape |
|
|
|
if positions is None: |
|
|
|
if self.cos.size(-2) < seq_len: |
|
self._create_rotary_embed(width=width, length=seq_len) |
|
rot_cos = self.cos[:seq_len, :].view(1, 1, seq_len, width) |
|
rot_sin = self.sin[:seq_len, :].view(1, 1, seq_len, width) |
|
else: |
|
max_len = int(positions.max()) + 1 |
|
if self.cos.size(-2) < max_len: |
|
self._create_rotary_embed(width=width, length=max_len) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
positions_flat = positions.view(-1) |
|
rot_cos = self.cos[positions_flat].view(batch_size, 1, seq_len, width) |
|
rot_sin = self.sin[positions_flat].view(batch_size, 1, seq_len, width) |
|
|
|
|
|
return rot_cos * input + rot_sin * self._rotate(input) |
|
|
|
|
|
class RotMultiheadAttention(MultiheadAttention): |
|
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, |
|
add_bias_kv=False, add_zero_attn=False, self_attention=False, |
|
encoder_decoder_attention=False): |
|
super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias, |
|
add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention, |
|
encoder_decoder_attention=encoder_decoder_attention) |
|
self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads) |
|
|
|
def forward( |
|
self, |
|
query, key, value, |
|
spk_pos_ids_flat=None, |
|
key_padding_mask=None, |
|
incremental_state=None, |
|
need_weights=True, |
|
static_kv=False, |
|
attn_mask=None, |
|
before_softmax=False, |
|
need_head_weights=False, |
|
enc_dec_attn_constraint_mask=None, |
|
reset_attn_weight=None |
|
): |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: |
|
return the average attention weights over all heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if 'prev_key' in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention: |
|
|
|
q, k, v = self.in_proj_qkv(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.in_proj_q(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.in_proj_k(key) |
|
v = self.in_proj_v(key) |
|
else: |
|
q = self.in_proj_q(query) |
|
k = self.in_proj_k(key) |
|
v = self.in_proj_v(value) |
|
q = q * self.scaling |
|
|
|
if self.bias_k is not None: |
|
assert self.bias_v is not None |
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) |
|
|
|
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if k is not None: |
|
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if v is not None: |
|
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
|
|
|
|
q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0] |
|
if saved_state is not None: |
|
|
|
if 'prev_key' in saved_state: |
|
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
k = torch.cat((prev_key, k), dim=1) |
|
if 'prev_value' in saved_state: |
|
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
v = torch.cat((prev_value, v), dim=1) |
|
saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view( |
|
bsz, self.num_heads, -1, self.head_dim) |
|
self._set_input_buffer(incremental_state, saved_state) |
|
if incremental_state is not None: |
|
key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0) |
|
else: |
|
key_pos = spk_pos_ids_flat |
|
k = self.rotary_embeds(k[None, :], positions=key_pos)[0] |
|
|
|
src_len = k.size(1) |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
if self.add_zero_attn: |
|
src_len += 1 |
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) |
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) |
|
|
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) |
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] |
|
|
|
if attn_mask is not None: |
|
if len(attn_mask.shape) == 2: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
elif len(attn_mask.shape) == 3: |
|
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( |
|
bsz * self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights + attn_mask |
|
|
|
if enc_dec_attn_constraint_mask is not None: |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.masked_fill( |
|
enc_dec_attn_constraint_mask.unsqueeze(2).bool(), |
|
-1e8, |
|
) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2), |
|
-1e8, |
|
) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
|
|
if before_softmax: |
|
return attn_weights, v |
|
|
|
attn_weights_float = softmax(attn_weights, dim=-1) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) |
|
|
|
if reset_attn_weight is not None: |
|
if reset_attn_weight: |
|
self.last_attn_probs = attn_probs.detach() |
|
else: |
|
assert self.last_attn_probs is not None |
|
attn_probs = self.last_attn_probs |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn = self.out_proj(attn) |
|
|
|
if need_weights: |
|
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
else: |
|
attn_weights = None |
|
|
|
return attn, (attn_weights, attn_logits) |
|
|
|
|
|
class RotMultiheadAttention2(MultiheadAttention): |
|
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, |
|
add_bias_kv=False, add_zero_attn=False, self_attention=False, |
|
encoder_decoder_attention=False): |
|
super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias, |
|
add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention, |
|
encoder_decoder_attention=encoder_decoder_attention) |
|
self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads) |
|
|
|
def forward( |
|
self, |
|
query, key, value, |
|
spk_pos_ids_flat=None, |
|
key_padding_mask=None, |
|
incremental_state=None, |
|
need_weights=True, |
|
static_kv=False, |
|
attn_mask=None, |
|
before_softmax=False, |
|
need_head_weights=False, |
|
enc_dec_attn_constraint_mask=None, |
|
reset_attn_weight=None |
|
): |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: |
|
return the average attention weights over all heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if 'prev_key' in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention: |
|
|
|
q, k, v = self.in_proj_qkv(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.in_proj_q(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.in_proj_k(key) |
|
v = self.in_proj_v(key) |
|
else: |
|
q = self.in_proj_q(query) |
|
k = self.in_proj_k(key) |
|
v = self.in_proj_v(value) |
|
|
|
if self.bias_k is not None: |
|
assert self.bias_v is not None |
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) |
|
|
|
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if k is not None: |
|
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if v is not None: |
|
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
|
|
|
|
q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0] |
|
if saved_state is not None: |
|
|
|
if 'prev_key' in saved_state: |
|
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
k = torch.cat((prev_key, k), dim=1) |
|
if 'prev_value' in saved_state: |
|
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
v = torch.cat((prev_value, v), dim=1) |
|
saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view( |
|
bsz, self.num_heads, -1, self.head_dim) |
|
self._set_input_buffer(incremental_state, saved_state) |
|
key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0) |
|
k = self.rotary_embeds(k[None, :], positions=key_pos)[0] |
|
|
|
src_len = k.size(1) |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
if attn_mask is not None: |
|
if len(attn_mask.shape) == 2: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
elif len(attn_mask.shape) == 3: |
|
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( |
|
bsz * self.num_heads, tgt_len, src_len) |
|
attn = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=attn_mask, dropout_p=0, is_causal=False) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn_logits = None |
|
attn_weights = None |
|
return attn, (attn_weights, attn_logits) |
|
|
|
|
|
class RotDecSALayer(nn.Module): |
|
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, |
|
kernel_size=9, ffn_hidden_size=1024, act='gelu', post_ln=False): |
|
super().__init__() |
|
self.c = c |
|
self.dropout = dropout |
|
self.layer_norm1 = LayerNorm(c) |
|
self.self_attn = RotMultiheadAttention( |
|
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False |
|
) |
|
self.layer_norm2 = LayerNorm(c) |
|
self.ffn = TransformerFFNLayer( |
|
c, ffn_hidden_size, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) |
|
self.post_ln = post_ln |
|
|
|
def forward( |
|
self, |
|
x, |
|
encoder_out=None, |
|
encoder_padding_mask=None, |
|
incremental_state=None, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
attn_out=None, |
|
reset_attn_weight=None, |
|
spk_pos_ids_flat=None, |
|
**kwargs, |
|
): |
|
layer_norm_training = kwargs.get('layer_norm_training', None) |
|
if layer_norm_training is not None: |
|
self.layer_norm1.training = layer_norm_training |
|
self.layer_norm2.training = layer_norm_training |
|
residual = x |
|
if not self.post_ln: |
|
x = self.layer_norm1(x) |
|
|
|
x, (attn_weights, _) = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=self_attn_padding_mask, |
|
incremental_state=incremental_state, |
|
attn_mask=self_attn_mask, |
|
spk_pos_ids_flat=spk_pos_ids_flat |
|
) |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = residual + x |
|
if self.post_ln: |
|
x = self.layer_norm1(x) |
|
|
|
residual = x |
|
if not self.post_ln: |
|
x = self.layer_norm2(x) |
|
x = self.ffn(x, incremental_state=incremental_state) |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = residual + x |
|
if self.post_ln: |
|
x = self.layer_norm2(x) |
|
return x, attn_weights |
|
|
|
def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None): |
|
self.encoder_attn.clear_buffer(incremental_state) |
|
self.ffn.clear_buffer(incremental_state) |
|
|
|
def set_buffer(self, name, tensor, incremental_state): |
|
return set_incremental_state(self, incremental_state, name, tensor) |
|
|
|
|
|
class RotDecSALayer2(RotDecSALayer): |
|
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, |
|
ffn_hidden_size=1024, act='gelu', post_ln=False): |
|
super().__init__(c, num_heads, dropout, attention_dropout, relu_dropout, kernel_size, ffn_hidden_size, act, |
|
post_ln) |
|
self.self_attn = RotMultiheadAttention2( |
|
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False |
|
) |
|
|
|
|
|
class RotTransformerDecoderLayer(nn.Module): |
|
def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=8, ffn_hidden_size=1024, post_ln=False, |
|
op_version=1): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.dropout = dropout |
|
self.num_heads = num_heads |
|
if op_version == 1: |
|
self.op = RotDecSALayer( |
|
hidden_size, num_heads, dropout=dropout, |
|
attention_dropout=0.0, relu_dropout=dropout, |
|
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size, |
|
post_ln=post_ln) |
|
else: |
|
self.op = RotDecSALayer2( |
|
hidden_size, num_heads, dropout=dropout, |
|
attention_dropout=0.0, relu_dropout=dropout, |
|
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size, |
|
post_ln=post_ln) |
|
|
|
def forward(self, x, **kwargs): |
|
return self.op(x, **kwargs) |
|
|
|
def clear_buffer(self, *args): |
|
return self.op.clear_buffer(*args) |
|
|
|
def set_buffer(self, *args): |
|
return self.op.set_buffer(*args) |
|
|