|
from torch import nn |
|
import torch |
|
|
|
from modules.commons.layers import LayerNorm |
|
|
|
|
|
class ConvolutionModule(nn.Module): |
|
"""ConvolutionModule in Conformer model. |
|
Args: |
|
channels (int): The number of channels of conv layers. |
|
kernel_size (int): Kernerl size of conv layers. |
|
""" |
|
|
|
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True): |
|
"""Construct an ConvolutionModule object.""" |
|
super(ConvolutionModule, self).__init__() |
|
|
|
assert (kernel_size - 1) % 2 == 0 |
|
|
|
self.pointwise_conv1 = nn.Conv1d( |
|
channels, |
|
2 * channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=bias, |
|
) |
|
self.depthwise_conv = nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
groups=channels, |
|
bias=bias, |
|
) |
|
self.norm = nn.BatchNorm1d(channels) |
|
self.pointwise_conv2 = nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=bias, |
|
) |
|
self.activation = activation |
|
|
|
def forward(self, x): |
|
"""Compute convolution module. |
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, channels). |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, channels). |
|
""" |
|
|
|
x = x.transpose(1, 2) |
|
|
|
|
|
x = self.pointwise_conv1(x) |
|
x = nn.functional.glu(x, dim=1) |
|
|
|
|
|
x = self.depthwise_conv(x) |
|
x = self.activation(self.norm(x)) |
|
|
|
x = self.pointwise_conv2(x) |
|
|
|
return x.transpose(1, 2) |
|
|
|
|
|
class MultiLayeredConv1d(torch.nn.Module): |
|
"""Multi-layered conv1d for Transformer block. |
|
This is a module of multi-leyered conv1d designed |
|
to replace positionwise feed-forward network |
|
in Transforner block, which is introduced in |
|
`FastSpeech: Fast, Robust and Controllable Text to Speech`_. |
|
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: |
|
https://arxiv.org/pdf/1905.09263.pdf |
|
""" |
|
|
|
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): |
|
"""Initialize MultiLayeredConv1d module. |
|
Args: |
|
in_chans (int): Number of input channels. |
|
hidden_chans (int): Number of hidden channels. |
|
kernel_size (int): Kernel size of conv1d. |
|
dropout_rate (float): Dropout rate. |
|
""" |
|
super(MultiLayeredConv1d, self).__init__() |
|
self.w_1 = torch.nn.Conv1d( |
|
in_chans, |
|
hidden_chans, |
|
kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
) |
|
self.w_2 = torch.nn.Conv1d( |
|
hidden_chans, |
|
in_chans, |
|
kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
) |
|
self.dropout = torch.nn.Dropout(dropout_rate) |
|
|
|
def forward(self, x): |
|
"""Calculate forward propagation. |
|
Args: |
|
x (torch.Tensor): Batch of input tensors (B, T, in_chans). |
|
Returns: |
|
torch.Tensor: Batch of output tensors (B, T, hidden_chans). |
|
""" |
|
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) |
|
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) |
|
|
|
|
|
class Swish(torch.nn.Module): |
|
"""Construct an Swish object.""" |
|
|
|
def forward(self, x): |
|
"""Return Swich activation function.""" |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
"""Encoder layer module. |
|
Args: |
|
size (int): Input dimension. |
|
self_attn (torch.nn.Module): Self-attention module instance. |
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance |
|
can be used as the argument. |
|
feed_forward (torch.nn.Module): Feed-forward module instance. |
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance |
|
can be used as the argument. |
|
feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. |
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance |
|
can be used as the argument. |
|
conv_module (torch.nn.Module): Convolution module instance. |
|
`ConvlutionModule` instance can be used as the argument. |
|
dropout_rate (float): Dropout rate. |
|
normalize_before (bool): Whether to use layer_norm before the first block. |
|
concat_after (bool): Whether to concat attention layer's input and output. |
|
if True, additional linear will be applied. |
|
i.e. x -> x + linear(concat(x, att(x))) |
|
if False, no additional linear will be applied. i.e. x -> x + att(x) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size, |
|
self_attn, |
|
feed_forward, |
|
feed_forward_macaron, |
|
conv_module, |
|
dropout_rate, |
|
normalize_before=True, |
|
concat_after=False, |
|
): |
|
"""Construct an EncoderLayer object.""" |
|
super(EncoderLayer, self).__init__() |
|
self.self_attn = self_attn |
|
self.feed_forward = feed_forward |
|
self.feed_forward_macaron = feed_forward_macaron |
|
self.conv_module = conv_module |
|
self.norm_ff = LayerNorm(size) |
|
self.norm_mha = LayerNorm(size) |
|
if feed_forward_macaron is not None: |
|
self.norm_ff_macaron = LayerNorm(size) |
|
self.ff_scale = 0.5 |
|
else: |
|
self.ff_scale = 1.0 |
|
if self.conv_module is not None: |
|
self.norm_conv = LayerNorm(size) |
|
self.norm_final = LayerNorm(size) |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.size = size |
|
self.normalize_before = normalize_before |
|
self.concat_after = concat_after |
|
if self.concat_after: |
|
self.concat_linear = nn.Linear(size + size, size) |
|
|
|
def forward(self, x_input, mask, cache=None): |
|
"""Compute encoded features. |
|
Args: |
|
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb. |
|
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. |
|
- w/o pos emb: Tensor (#batch, time, size). |
|
mask (torch.Tensor): Mask tensor for the input (#batch, time). |
|
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, size). |
|
torch.Tensor: Mask tensor (#batch, time). |
|
""" |
|
if isinstance(x_input, tuple): |
|
x, pos_emb = x_input[0], x_input[1] |
|
else: |
|
x, pos_emb = x_input, None |
|
|
|
|
|
if self.feed_forward_macaron is not None: |
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_ff_macaron(x) |
|
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x)) |
|
if not self.normalize_before: |
|
x = self.norm_ff_macaron(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_mha(x) |
|
|
|
if cache is None: |
|
x_q = x |
|
else: |
|
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) |
|
x_q = x[:, -1:, :] |
|
residual = residual[:, -1:, :] |
|
mask = None if mask is None else mask[:, -1:, :] |
|
|
|
if pos_emb is not None: |
|
x_att = self.self_attn(x_q, x, x, pos_emb, mask) |
|
else: |
|
x_att = self.self_attn(x_q, x, x, mask) |
|
|
|
if self.concat_after: |
|
x_concat = torch.cat((x, x_att), dim=-1) |
|
x = residual + self.concat_linear(x_concat) |
|
else: |
|
x = residual + self.dropout(x_att) |
|
if not self.normalize_before: |
|
x = self.norm_mha(x) |
|
|
|
|
|
if self.conv_module is not None: |
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_conv(x) |
|
x = residual + self.dropout(self.conv_module(x)) |
|
if not self.normalize_before: |
|
x = self.norm_conv(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_ff(x) |
|
x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) |
|
if not self.normalize_before: |
|
x = self.norm_ff(x) |
|
|
|
if self.conv_module is not None: |
|
x = self.norm_final(x) |
|
|
|
if cache is not None: |
|
x = torch.cat([cache, x], dim=1) |
|
|
|
if pos_emb is not None: |
|
return (x, pos_emb), mask |
|
|
|
return x, mask |
|
|