|
import re |
|
|
|
import torch |
|
import numpy as np |
|
from textgrid import TextGrid |
|
|
|
from utils.text.text_encoder import is_sil_phoneme |
|
|
|
|
|
def get_mel2ph(tg_fn, ph, mel, hop_size, audio_sample_rate, min_sil_duration=0): |
|
ph_list = ph.split(" ") |
|
itvs = TextGrid.fromFile(tg_fn)[1] |
|
itvs_ = [] |
|
for i in range(len(itvs)): |
|
if itvs[i].maxTime - itvs[i].minTime < min_sil_duration and i > 0 and is_sil_phoneme(itvs[i].mark): |
|
itvs_[-1].maxTime = itvs[i].maxTime |
|
else: |
|
itvs_.append(itvs[i]) |
|
itvs.intervals = itvs_ |
|
itv_marks = [itv.mark for itv in itvs] |
|
tg_len = len([x for x in itvs if not is_sil_phoneme(x.mark)]) |
|
ph_len = len([x for x in ph_list if not is_sil_phoneme(x)]) |
|
assert tg_len == ph_len, (tg_len, ph_len, itv_marks, ph_list, tg_fn) |
|
mel2ph = np.zeros([mel.shape[0]], int) |
|
i_itv = 0 |
|
i_ph = 0 |
|
while i_itv < len(itvs): |
|
itv = itvs[i_itv] |
|
ph = ph_list[i_ph] |
|
itv_ph = itv.mark |
|
start_frame = int(itv.minTime * audio_sample_rate / hop_size + 0.5) |
|
end_frame = int(itv.maxTime * audio_sample_rate / hop_size + 0.5) |
|
if is_sil_phoneme(itv_ph) and not is_sil_phoneme(ph): |
|
mel2ph[start_frame:end_frame] = i_ph |
|
i_itv += 1 |
|
elif not is_sil_phoneme(itv_ph) and is_sil_phoneme(ph): |
|
i_ph += 1 |
|
else: |
|
if not ((is_sil_phoneme(itv_ph) and is_sil_phoneme(ph)) \ |
|
or re.sub(r'\d+', '', itv_ph.lower()) == re.sub(r'\d+', '', ph.lower())): |
|
print(f"| WARN: {tg_fn} phs are not same: ", itv_ph, ph, itv_marks, ph_list) |
|
mel2ph[start_frame:end_frame] = i_ph + 1 |
|
i_ph += 1 |
|
i_itv += 1 |
|
mel2ph[-1] = mel2ph[-2] |
|
assert not np.any(mel2ph == 0) |
|
T_t = len(ph_list) |
|
dur = mel2token_to_dur(mel2ph, T_t) |
|
return mel2ph.tolist(), dur.tolist() |
|
|
|
|
|
def split_audio_by_mel2ph(audio, mel2ph, hop_size, audio_num_mel_bins): |
|
if isinstance(audio, torch.Tensor): |
|
audio = audio.numpy() |
|
if isinstance(mel2ph, torch.Tensor): |
|
mel2ph = mel2ph.numpy() |
|
assert len(audio.shape) == 1, len(mel2ph.shape) == 1 |
|
split_locs = [] |
|
for i in range(1, len(mel2ph)): |
|
if mel2ph[i] != mel2ph[i - 1]: |
|
split_loc = i * hop_size |
|
split_locs.append(split_loc) |
|
|
|
new_audio = [] |
|
for i in range(len(split_locs) - 1): |
|
new_audio.append(audio[split_locs[i]:split_locs[i + 1]]) |
|
new_audio.append(np.zeros([0.5 * audio_num_mel_bins])) |
|
return np.concatenate(new_audio) |
|
|
|
|
|
def mel2token_to_dur(mel2token, T_txt=None, max_dur=None): |
|
is_torch = isinstance(mel2token, torch.Tensor) |
|
has_batch_dim = True |
|
if not is_torch: |
|
mel2token = torch.LongTensor(mel2token) |
|
if T_txt is None: |
|
T_txt = mel2token.max() |
|
if len(mel2token.shape) == 1: |
|
mel2token = mel2token[None, ...] |
|
has_batch_dim = False |
|
B, _ = mel2token.shape |
|
dur = mel2token.new_zeros(B, T_txt + 1).scatter_add(1, mel2token, torch.ones_like(mel2token)) |
|
dur = dur[:, 1:] |
|
if max_dur is not None: |
|
dur = dur.clamp(max=max_dur) |
|
if not is_torch: |
|
dur = dur.numpy() |
|
if not has_batch_dim: |
|
dur = dur[0] |
|
return dur |
|
|