ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
13.8 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
def nonlinearity(x):
# swish
return x * torch.sigmoid(x)
class Normalize(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
self.proj = nn.Linear(channels, channels)
def forward(self, x):
x = x.transpose(1, 2)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
x = self.proj(x)
return x.transpose(1, 2)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=4,
stride=2,
padding=1)
def forward(self, x):
if self.with_conv:
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.conv2 = torch.nn.Conv1d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x, _, x_mask):
x = x * x_mask
h = x
h = self.norm1(h) * x_mask
h = nonlinearity(h) * x_mask
h = self.conv1(h) * x_mask
h = self.norm2(h) * x_mask
h = nonlinearity(h) * x_mask
h = self.conv2(h) * x_mask
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x) * x_mask
else:
x = self.nin_shortcut(x) * x_mask
return (x + h) * x_mask
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x, x_mask):
h_ = x * x_mask
h_ = self.norm(h_) * x_mask
q = self.q(h_) * x_mask
k = self.k(h_) * x_mask
v = self.v(h_) * x_mask
# compute attention
b, c, h = q.shape
w = 1
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h * w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = w_ + ((1 - x_mask) * -1e8) + ((1 - x_mask) * -1e8).transpose(1, 2)
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b, c, h)
h_ = self.proj_out(h_) * x_mask
return (x + h_) * x_mask
class Encoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
resamp_with_conv=False, in_channels):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv1d(in_channels,
self.ch,
kernel_size=3,
stride=1,
padding=1)
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch))
block_in = block_out
if i_level == self.num_resolutions - 1:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv1d(block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x, x_mask):
if x_mask is None:
x_mask = torch.ones_like(x_mask[:, :, :1])
x = x.permute(0, 2, 1)
x_mask = x_mask.permute(0, 2, 1)
temb = None
# downsampling
hs = [self.conv_in(x) * x_mask]
for i_level in range(self.num_resolutions):
x_mask_ = x_mask[:, :, ::2 ** i_level]
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb, x_mask_) * x_mask_
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h, x_mask_) * x_mask_
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]) * x_mask_[:, :, ::2])
x_mask_ = x_mask[:, :, ::2 ** (self.num_resolutions - 1)]
# middle
h = hs[-1] * x_mask_
h = self.mid.block_1(h, temb, x_mask_) * x_mask_
h = self.mid.attn_1(h, x_mask_) * x_mask_
h = self.mid.block_2(h, temb, x_mask_) * x_mask_
# end
h = self.norm_out(h) * x_mask_
h = nonlinearity(h) * x_mask_
h = self.conv_out(h) * x_mask_
h = h.permute(0, 2, 1)
return h
class Decoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
resamp_with_conv=True, in_channels, give_pre_end=False):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
self.give_pre_end = give_pre_end
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
# z to block_in
self.conv_in = torch.nn.Conv1d(in_channels,
block_in,
kernel_size=3,
stride=1,
padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch))
block_in = block_out
if i_level == self.num_resolutions - 1:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv1d(block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1)
def forward(self, z, x_mask):
if x_mask is None:
x_mask = torch.ones_like(z[:, :, :1]).repeat(1, 8, 1)
z = z.permute(0, 2, 1)
x_mask = x_mask.permute(0, 2, 1)
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
i_level = self.num_resolutions - 1
x_mask_ = x_mask[:, :, ::2 ** i_level]
h = self.mid.block_1(h, temb, x_mask_)
h = self.mid.attn_1(h, x_mask_)
h = self.mid.block_2(h, temb, x_mask_)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
x_mask_ = x_mask[:, :, ::2 ** i_level]
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb, x_mask_)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, x_mask_)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h) * x_mask
h = h.permute(0, 2, 1)
return h