|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import matplotlib.pyplot as plt |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline |
|
from typing import Optional, Union, Tuple, List, Callable, Dict |
|
import numpy as np |
|
import copy |
|
import torch.nn.functional as F |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) |
|
from diffusers.utils import ( logging, randn_tensor, replace_example_docstring, ) |
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg |
|
import os |
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import StableDiffusionXLPipeline |
|
|
|
>>> pipe = StableDiffusionXLPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> prompt = "a photo of an astronaut riding a horse on mars" |
|
>>> image = pipe(prompt).images[0] |
|
``` |
|
""" |
|
|
|
|
|
class sdxl(StableDiffusionXLPipeline): |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
controller=None, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
same_init=False, |
|
x_stars=None, |
|
prox_guidance=True, |
|
masa_control=False, |
|
masa_mask=False, |
|
masa_start_step=40, |
|
masa_start_layer=55, |
|
mask_file=None, |
|
query_mask_time=[0, 10], |
|
**kwargs |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.7): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple. When returning a tuple, the first element is a list with the generated images, and the second |
|
element is a list of `bool`s denoting whether the corresponding generated image likely represents |
|
"not-safe-for-work" (nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
inv_batch_size = len(latents) if latents is not None else 1 |
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) |
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
same_init=same_init, |
|
sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None, |
|
) |
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
add_time_ids = self._get_add_time_ids( |
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
|
score_delta,mask_edit=self.prox_regularization( |
|
noise_pred_uncond, |
|
noise_pred_text, |
|
i, |
|
t, |
|
prox_guidance=prox_guidance, |
|
) |
|
if mask_edit is not None: |
|
a = 1 |
|
noise_pred = noise_pred_uncond + guidance_scale * score_delta |
|
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
latents = self.proximal_guidance( |
|
i, |
|
t, |
|
latents, |
|
mask_edit, |
|
prox_guidance=prox_guidance, |
|
dtype=self.unet.dtype, |
|
x_stars=x_stars, |
|
controller=controller, |
|
sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None, |
|
inv_batch_size=inv_batch_size, |
|
only_inversion_align=kwargs['only_inversion_align'] if 'only_inversion_align' in kwargs else False, |
|
) |
|
|
|
if controller is not None: |
|
latents = controller.step_callback(latents) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
self.vae.to(dtype=torch.float32) |
|
|
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(latents.dtype) |
|
self.vae.decoder.conv_in.to(latents.dtype) |
|
self.vae.decoder.mid_block.to(latents.dtype) |
|
else: |
|
latents = latents.float() |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|
|
image = self.watermark.apply_watermark(image) |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
return image |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None,same_init=False,sample_ref_match=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
if sample_ref_match is not None: |
|
new_latents=randn_tensor((batch_size,*shape[1:]), generator=generator, device=device, dtype=dtype) |
|
for key,value in sample_ref_match.items(): |
|
new_latents[key]=latents[value].clone() |
|
latents=new_latents |
|
else: |
|
if same_init is True: |
|
if latents is None: |
|
latents = randn_tensor((1,*shape[1:]), generator=generator, device=device, dtype=dtype).expand(shape).to(device) |
|
else: |
|
if batch_size>1 and latents.shape[0]==1: |
|
latents=latents.expand(shape).to(device) |
|
else: |
|
latents = latents.to(device) |
|
else: |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
sample_ref_match=None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
|
|
prompt_embeds_list = [] |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
negative_prompt_embeds_list = [] |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
bs_embed = pooled_prompt_embeds.shape[0] |
|
|
|
if sample_ref_match is not None: |
|
new_negative_prompt_embeds=torch.zeros_like(prompt_embeds) |
|
new_negative_pooled_prompt_embeds=torch.zeros_like(pooled_prompt_embeds) |
|
for key,value in sample_ref_match.items(): |
|
new_negative_prompt_embeds[key]=negative_prompt_embeds[value].clone() |
|
new_negative_pooled_prompt_embeds[key]=negative_pooled_prompt_embeds[value].clone() |
|
negative_prompt_embeds=new_negative_prompt_embeds |
|
negative_pooled_prompt_embeds=new_negative_pooled_prompt_embeds |
|
else: |
|
if negative_pooled_prompt_embeds.shape[0]==1 and bs_embed!=1: |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.repeat(bs_embed,1) |
|
if negative_prompt_embeds.shape[0]==1 and bs_embed!=1: |
|
negative_prompt_embeds=negative_prompt_embeds.repeat(bs_embed,1,1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
def encode_prompt_not_zero_uncond( |
|
self, |
|
prompt, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
|
|
prompt_embeds_list = [] |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device),output_hidden_states=True) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
uncond_tokens: List[str] |
|
if prompt is not None and isinstance(prompt,List) and negative_prompt == "": |
|
negative_prompt = ["" for i in range(len(prompt))] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
negative_prompt_embeds_list = [] |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
bs_embed = pooled_prompt_embeds.shape[0] |
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
def prox_regularization( |
|
self, |
|
noise_pred_uncond, |
|
noise_pred_text, |
|
i, |
|
t, |
|
prox_guidance=False, |
|
prox=None, |
|
quantile=0.75, |
|
recon_t=400, |
|
dilate_radius=2, |
|
): |
|
if prox_guidance is True: |
|
mask_edit = None |
|
if prox == 'l1': |
|
score_delta = (noise_pred_text - noise_pred_uncond).float() |
|
if quantile > 0: |
|
threshold = score_delta.abs().quantile(quantile) |
|
else: |
|
threshold = -quantile |
|
score_delta -= score_delta.clamp(-threshold, threshold) |
|
score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta) |
|
score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta) |
|
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): |
|
mask_edit = (score_delta.abs() > threshold).float() |
|
if dilate_radius > 0: |
|
radius = int(dilate_radius) |
|
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) |
|
elif prox == 'l0': |
|
score_delta = (noise_pred_text - noise_pred_uncond).float() |
|
if quantile > 0: |
|
threshold = score_delta.abs().quantile(quantile) |
|
else: |
|
threshold = -quantile |
|
score_delta -= score_delta.clamp(-threshold, threshold) |
|
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): |
|
mask_edit = (score_delta.abs() > threshold).float() |
|
if dilate_radius > 0: |
|
radius = int(dilate_radius) |
|
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) |
|
elif prox==None: |
|
score_delta = (noise_pred_text - noise_pred_uncond).float() |
|
if quantile > 0: |
|
threshold = score_delta.abs().quantile(quantile) |
|
else: |
|
threshold = -quantile |
|
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): |
|
mask_edit = (score_delta.abs() > threshold).float() |
|
if dilate_radius > 0: |
|
radius = int(dilate_radius) |
|
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) |
|
else: |
|
raise NotImplementedError |
|
return score_delta,mask_edit |
|
else: |
|
return noise_pred_text - noise_pred_uncond,None |
|
|
|
def proximal_guidance( |
|
self, |
|
i, |
|
t, |
|
latents, |
|
mask_edit, |
|
dtype, |
|
prox_guidance=False, |
|
recon_t=400, |
|
recon_end=0, |
|
recon_lr=0.1, |
|
x_stars=None, |
|
controller=None, |
|
sample_ref_match=None, |
|
inv_batch_size=1, |
|
only_inversion_align=False, |
|
): |
|
if mask_edit is not None and prox_guidance and (recon_t > recon_end and t < recon_t) or (recon_t < -recon_end and t > -recon_t): |
|
if controller.layer_fusion.remove_mask is not None: |
|
fix_mask = copy.deepcopy(controller.layer_fusion.remove_mask) |
|
mask_edit[1] = (mask_edit[1]+fix_mask).clamp(0,1) |
|
if mask_edit.shape[0] > 2: |
|
mask_edit[2].fill_(1) |
|
recon_mask = 1 - mask_edit |
|
target_latents=x_stars[len(x_stars)-i-2] |
|
new_target_latents=torch.zeros_like(latents) |
|
for key,value in sample_ref_match.items(): |
|
new_target_latents[key]=target_latents[value].clone() |
|
latents = latents - recon_lr * (latents - new_target_latents) * recon_mask |
|
return latents.to(dtype) |
|
|
|
def slerp(val, low, high): |
|
""" taken from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/4 |
|
""" |
|
low_norm = low/torch.norm(low, dim=1, keepdim=True) |
|
high_norm = high/torch.norm(high, dim=1, keepdim=True) |
|
omega = torch.acos((low_norm*high_norm).sum(1)) |
|
so = torch.sin(omega) |
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high |
|
return res |
|
|
|
|
|
def slerp_tensor(val, low, high): |
|
shape = low.shape |
|
res = slerp(val, low.flatten(1), high.flatten(1)) |
|
return res.reshape(shape) |
|
|
|
|
|
def dilate(image, kernel_size, stride=1, padding=0): |
|
""" |
|
Perform dilation on a binary image using a square kernel. |
|
""" |
|
|
|
assert image.max() <= 1 and image.min() >= 0 |
|
|
|
|
|
dilated_image = F.max_pool2d(image, kernel_size, stride, padding) |
|
|
|
return dilated_image |
|
|
|
def exec_classifier_free_guidance(model,latents,controller,t,guidance_scale, |
|
do_classifier_free_guidance,noise_pred,guidance_rescale, |
|
prox=None, quantile=0.75,image_enc=None, recon_lr=0.1, recon_t=400,recon_end_t=0, |
|
inversion_guidance=False, reconstruction_guidance=False,x_stars=None, i=0, |
|
use_localblend_mask=False, |
|
save_heatmap=False,**kwargs): |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
|
if prox is None and inversion_guidance is True: |
|
prox = 'l1' |
|
step_kwargs = { |
|
'ref_image': None, |
|
'recon_lr': 0, |
|
'recon_mask': None, |
|
} |
|
mask_edit = None |
|
if prox is not None: |
|
if prox == 'l1': |
|
score_delta = (noise_pred_text - noise_pred_uncond).float() |
|
if quantile > 0: |
|
threshold = score_delta.abs().quantile(quantile) |
|
else: |
|
threshold = -quantile |
|
score_delta -= score_delta.clamp(-threshold, threshold) |
|
score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta) |
|
score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta) |
|
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): |
|
step_kwargs['ref_image'] = image_enc |
|
step_kwargs['recon_lr'] = recon_lr |
|
score_delta_norm=score_delta.abs() |
|
score_delta_norm=(score_delta_norm - score_delta_norm.min ()) / (score_delta_norm.max () - score_delta_norm.min ()) |
|
mask_edit = (score_delta.abs() > threshold).float() |
|
if save_heatmap and i%10==0: |
|
for kk in range(4): |
|
sns.heatmap(mask_edit[1][kk].clone().cpu(), cmap='coolwarm') |
|
plt.savefig(f'./vis/prox_inv/heatmap1_mask_{i}_{kk}.png') |
|
plt.clf() |
|
if kwargs.get('dilate_mask', 2) > 0: |
|
radius = int(kwargs.get('dilate_mask', 2)) |
|
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) |
|
if save_heatmap and i%10==0: |
|
for kk in range(4): |
|
sns.heatmap(mask_edit[1][kk].clone().cpu(), cmap='coolwarm') |
|
plt.savefig(f'./vis/prox_inv/heatmap1_mask_dilate_{i}_{kk}.png') |
|
plt.clf() |
|
step_kwargs['recon_mask'] = 1 - mask_edit |
|
elif prox == 'l0': |
|
score_delta = (noise_pred_text - noise_pred_uncond).float() |
|
if quantile > 0: |
|
threshold = score_delta.abs().quantile(quantile) |
|
else: |
|
threshold = -quantile |
|
score_delta -= score_delta.clamp(-threshold, threshold) |
|
if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t): |
|
step_kwargs['ref_image'] = image_enc |
|
step_kwargs['recon_lr'] = recon_lr |
|
mask_edit = (score_delta.abs() > threshold).float() |
|
if kwargs.get('dilate_mask', 2) > 0: |
|
radius = int(kwargs.get('dilate_mask', 2)) |
|
mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius) |
|
step_kwargs['recon_mask'] = 1 - mask_edit |
|
else: |
|
raise NotImplementedError |
|
noise_pred = (noise_pred_uncond + guidance_scale * score_delta).to(model.unet.dtype) |
|
else: |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
if reconstruction_guidance: |
|
kwargs.update(step_kwargs) |
|
latents = model.scheduler.step(noise_pred, t, latents, **kwargs, return_dict=False)[0] |
|
if mask_edit is not None and inversion_guidance and (recon_t > recon_end_t and t < recon_t) or (recon_t < recon_end_t and t > -recon_t): |
|
if use_localblend_mask: |
|
assert hasattr(controller,"layer_fusion") |
|
if save_heatmap and i%10==0: |
|
sns.heatmap(controller.layer_fusion.mask[0][0].clone().cpu(), cmap='coolwarm') |
|
plt.savefig(f'./vis/prox_inv/heatmap0_localblendmask_{i}.png') |
|
plt.clf() |
|
sns.heatmap(controller.layer_fusion.mask[1][0].clone().cpu(), cmap='coolwarm') |
|
plt.savefig(f'./vis/prox_inv/heatmap1_localblendmask_{i}.png') |
|
plt.clf() |
|
layer_fusion_mask=controller.layer_fusion.mask.float() |
|
layer_fusion_mask[0]=layer_fusion_mask[1] |
|
recon_mask=1-layer_fusion_mask.expand_as(latents) |
|
else: |
|
recon_mask = 1 - mask_edit |
|
target_latents=x_stars[len(x_stars)-i-2].expand_as(latents) |
|
|
|
if len(target_latents.shape)==4: |
|
target_latents=target_latents[0] |
|
latents = latents - recon_lr * (latents - target_latents) * recon_mask |
|
|
|
if controller is not None: |
|
latents = controller.step_callback(latents) |
|
return latents.to(model.unet.dtype) |
|
|