yolox-s / eval_onnx.py
zhengrongzhang's picture
update eval code for NCHW->NHWC
ef66c2c
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import io
import sys
import cv2
import json
import time
import pathlib
import argparse
import tempfile
import itertools
import contextlib
import torch
import torchvision
import numpy as np
import onnxruntime as ort
from tqdm import tqdm
from loguru import logger
from tabulate import tabulate
from collections import defaultdict
from pycocotools.cocoeval import COCOeval
CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))
from coco import COCO_CLASSES
class COCOEvaluator:
"""
COCO AP Evaluation class. All the data in the val2017 dataset are processed
and evaluated by COCO API.
"""
def __init__(
self,
dataloader,
img_size: int,
confthre: float,
nmsthre: float,
num_classes: int,
testdev: bool = False,
per_class_AP: bool = False,
per_class_AR: bool = False,
):
"""
Args:
dataloader (Dataloader): evaluate dataloader.
img_size: image size after preprocess. images are resized
to squares whose shape is (img_size, img_size).
confthre: confidence threshold ranging from 0 to 1, which
is defined in the config file.
nmsthre: IoU threshold of non-max supression ranging from 0 to 1.
num_classes: number of all classes of interest.
testdev: whether run on the testdev set of COCO.
per_class_AP: Show per class AP during evalution or not. Default to False.
per_class_AR: Show per class AR during evalution or not. Default to False.
"""
self.dataloader = dataloader
self.img_size = img_size
self.confthre = confthre
self.nmsthre = nmsthre
self.num_classes = num_classes
self.testdev = testdev
self.per_class_AP = per_class_AP
self.per_class_AR = per_class_AR
def evaluate(self, ort_sess, return_outputs=False):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
NOTE: This function will change training mode to False, please save states if needed.
Args:
ort_sess (onnxruntime.InferenceSession): onnxruntime session to evaluate.
return_outputs (bool): flag indicates whether return image-wise result or not
Returns:
eval_results (tuple): summary of metrics for evaluation
output_data (defaultdict): image-wise result
"""
data_list = []
output_data = defaultdict()
inference_time = 0
nms_time = 0
n_samples = max(len(self.dataloader) - 1, 1)
input_name = ort_sess.get_inputs()[0].name
for cur_iter, (imgs, _, info_imgs, ids) in enumerate(tqdm(self.dataloader)):
# with torch.no_grad():
# skip the last iters since batchsize might be not enough for batch inference
is_time_record = cur_iter < len(self.dataloader) - 1
if is_time_record:
start = time.time()
# outputs = ort_sess.run(None, {input_name: imgs.numpy()})
outputs = ort_sess.run(None, {input_name: np.transpose(imgs.numpy(), (0, 2, 3, 1))})
outputs = [np.transpose(out, (0, 3, 1, 2)) for out in outputs]
outputs = [torch.Tensor(out) for out in outputs]
outputs = head_postprocess(outputs)
if is_time_record:
infer_end = time.time()
inference_time += infer_end - start
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
if is_time_record:
nms_end = time.time()
nms_time += nms_end - infer_end
data_list_elem, image_wise_data = self.convert_to_coco_format(
outputs, info_imgs, ids, return_outputs=True)
data_list.extend(data_list_elem)
output_data.update(image_wise_data)
statistics = [inference_time, nms_time, n_samples]
eval_results = self.evaluate_prediction(data_list, statistics)
if return_outputs:
return eval_results, output_data
return eval_results
def convert_to_coco_format(self, outputs, info_imgs, ids, return_outputs=False):
data_list = []
image_wise_data = defaultdict(dict)
for (output, img_h, img_w, img_id) in zip(
outputs, info_imgs[0], info_imgs[1], ids
):
if output is None:
continue
output = output.cpu()
bboxes = output[:, 0:4]
# preprocessing: resize
scale = min(
self.img_size[0] / float(img_h), self.img_size[1] / float(img_w)
)
bboxes /= scale
cls = output[:, 6]
scores = output[:, 4] * output[:, 5]
image_wise_data.update({
int(img_id): {
"bboxes": [box.numpy().tolist() for box in bboxes],
"scores": [score.numpy().item() for score in scores],
"categories": [
self.dataloader.dataset.class_ids[int(cls[ind])]
for ind in range(bboxes.shape[0])
],
}
})
bboxes = xyxy2xywh(bboxes)
for ind in range(bboxes.shape[0]):
label = self.dataloader.dataset.class_ids[int(cls[ind])]
pred_data = {
"image_id": int(img_id),
"category_id": label,
"bbox": bboxes[ind].numpy().tolist(),
"score": scores[ind].numpy().item(),
"segmentation": [],
} # COCO json format
data_list.append(pred_data)
if return_outputs:
return data_list, image_wise_data
return data_list
def evaluate_prediction(self, data_dict, statistics):
# if not is_main_process():
# return 0, 0, None
logger.info("Evaluate in main process...")
annType = ["segm", "bbox", "keypoints"]
inference_time = statistics[0]
nms_time = statistics[1]
n_samples = statistics[2]
a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size)
a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size)
time_info = ", ".join(
[
"Average {} time: {:.2f} ms".format(k, v)
for k, v in zip(
["forward", "NMS", "inference"],
[a_infer_time, a_nms_time, (a_infer_time + a_nms_time)],
)
]
)
info = time_info + "\n"
# Evaluate the Dt (detection) json comparing with the ground truth
if len(data_dict) > 0:
cocoGt = self.dataloader.dataset.coco
if self.testdev:
json.dump(data_dict, open("./yolox_testdev_2017.json", "w"))
cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json")
else:
_, tmp = tempfile.mkstemp()
json.dump(data_dict, open(tmp, "w"))
cocoDt = cocoGt.loadRes(tmp)
logger.info("Use standard COCOeval.")
cocoEval = COCOeval(cocoGt, cocoDt, annType[1])
cocoEval.evaluate()
cocoEval.accumulate()
redirect_string = io.StringIO()
with contextlib.redirect_stdout(redirect_string):
cocoEval.summarize()
info += redirect_string.getvalue()
cat_ids = list(cocoGt.cats.keys())
cat_names = [cocoGt.cats[catId]['name'] for catId in sorted(cat_ids)]
if self.per_class_AP:
AP_table = per_class_AP_table(cocoEval, class_names=cat_names)
info += "per class AP:\n" + AP_table + "\n"
if self.per_class_AR:
AR_table = per_class_AR_table(cocoEval, class_names=cat_names)
info += "per class AR:\n" + AR_table + "\n"
return cocoEval.stats[0], cocoEval.stats[1], info
else:
return 0, 0, info
class ValTransform:
"""
Defines the transformations that should be applied to test PIL image
for input into the network
"""
def __init__(self, swap=(2, 0, 1), legacy=False):
self.swap = swap
self.legacy = legacy
# assume input is cv2 img for now
def __call__(self, img, res, input_size):
img, _ = preproc(img, input_size, self.swap)
if self.legacy:
img = img[::-1, :, :].copy()
img /= 255.0
img -= np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1)
img /= np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1)
return img, np.zeros((1, 5))
def preproc(img, input_size, swap=(2, 0, 1)):
"""Preprocess function for preparing input for the network"""
if len(img.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
else:
padded_img = np.ones(input_size, dtype=np.uint8) * 114
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.uint8)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
padded_img = padded_img.transpose(swap)
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
return padded_img, r
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45, class_agnostic=False):
"""Post-processing part after the prediction heads with NMS"""
box_corner = prediction.new(prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for i, image_pred in enumerate(prediction):
# If none are remaining => process next image
if not image_pred.size(0):
continue
# Get score and class with the highest confidence
class_conf, class_pred = torch.max(image_pred[:, 5: 5 + num_classes], 1, keepdim=True)
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= conf_thre).squeeze()
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
detections = torch.cat((image_pred[:, :5], class_conf, class_pred.float()), 1)
detections = detections[conf_mask]
if not detections.size(0):
continue
if class_agnostic:
nms_out_index = torchvision.ops.nms(
detections[:, :4],
detections[:, 4] * detections[:, 5],
nms_thre,
)
else:
nms_out_index = torchvision.ops.batched_nms(
detections[:, :4],
detections[:, 4] * detections[:, 5],
detections[:, 6],
nms_thre,
)
detections = detections[nms_out_index]
if output[i] is None:
output[i] = detections
else:
output[i] = torch.cat((output[i], detections))
return output
def head_postprocess(outputs, strides=[8, 16, 32]):
"""Decode outputs from predictions of the detection heads"""
hw = [x.shape[-2:] for x in outputs]
# [batch, n_anchors_all, 85]
outputs = torch.cat([x.flatten(start_dim=2) for x in outputs], dim=2).permute(0, 2, 1)
outputs[..., 4:] = outputs[..., 4:].sigmoid()
return decode_outputs(outputs, outputs[0].type(), hw, strides)
def decode_outputs(outputs, dtype, ori_hw, ori_strides):
grids = []
strides = []
for (hsize, wsize), stride in zip(ori_hw, ori_strides):
yv, xv = meshgrid([torch.arange(hsize), torch.arange(wsize)])
grid = torch.stack((xv, yv), 2).view(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
strides.append(torch.full((*shape, 1), stride))
grids = torch.cat(grids, dim=1).type(dtype)
strides = torch.cat(strides, dim=1).type(dtype)
outputs[..., :2] = (outputs[..., :2] + grids) * strides
outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
return outputs
def xyxy2xywh(bboxes):
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
return bboxes
def meshgrid(*tensors):
_TORCH_VER = [int(x) for x in torch.__version__.split(".")[:2]]
if _TORCH_VER >= [1, 10]:
return torch.meshgrid(*tensors, indexing="ij")
else:
return torch.meshgrid(*tensors)
def per_class_AR_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AR"], colums=6):
"""Format the recall of each class"""
per_class_AR = {}
recalls = coco_eval.eval["recall"]
# dimension of recalls: [TxKxAxM]
# recall has dims (iou, cls, area range, max dets)
assert len(class_names) == recalls.shape[1]
for idx, name in enumerate(class_names):
recall = recalls[:, idx, 0, -1]
recall = recall[recall > -1]
ar = np.mean(recall) if recall.size else float("nan")
per_class_AR[name] = float(ar * 100)
num_cols = min(colums, len(per_class_AR) * len(headers))
result_pair = [x for pair in per_class_AR.items() for x in pair]
row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
table_headers = headers * (num_cols // len(headers))
table = tabulate(
row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
)
return table
def per_class_AP_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AP"], colums=6):
"""Format the precision of each class"""
per_class_AP = {}
precisions = coco_eval.eval["precision"]
# dimension of precisions: [TxRxKxAxM]
# precision has dims (iou, recall, cls, area range, max dets)
assert len(class_names) == precisions.shape[2]
for idx, name in enumerate(class_names):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
per_class_AP[name] = float(ap * 100)
num_cols = min(colums, len(per_class_AP) * len(headers))
result_pair = [x for pair in per_class_AP.items() for x in pair]
row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
table_headers = headers * (num_cols // len(headers))
table = tabulate(
row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
)
return table
def get_eval_loader(batch_size, test_size=(640, 640), data_dir='data/COCO', data_num_workers=0, testdev=False, legacy=False):
from coco import COCODataset
valdataset = COCODataset(
data_dir=data_dir,
json_file='instances_val2017.json' if not testdev else 'instances_test2017.json',
name="val2017" if not testdev else "test2017",
img_size=test_size,
preproc=ValTransform(legacy=legacy),
)
sampler = torch.utils.data.SequentialSampler(valdataset)
dataloader_kwargs = {
"num_workers": data_num_workers,
"pin_memory": True,
"sampler": sampler,
"batch_size": batch_size
}
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
return val_loader
def make_parser():
parser = argparse.ArgumentParser("onnxruntime inference sample")
parser.add_argument(
"-m",
"--model",
type=str,
default="yolox-s-int8.onnx",
help="Input your onnx model.",
)
parser.add_argument(
"-b",
"--batch_size",
type=int,
default=1,
help="Batch size for inference..",
)
parser.add_argument(
"--input_shape",
type=str,
default="640,640",
help="Specify an input shape for inference.",
)
parser.add_argument(
"--ipu",
action="store_true",
help="Use IPU for inference.",
)
parser.add_argument(
"--provider_config",
type=str,
default="vaip_config.json",
help="Path of the config file for setting provider_options.",
)
return parser
if __name__ == '__main__':
args = make_parser().parse_args()
input_shape = tuple(map(int, args.input_shape.split(',')))
if args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": args.provider_config}]
else:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
provider_options = None
session = ort.InferenceSession(args.model, providers=providers, provider_options=provider_options)
val_loader = get_eval_loader(args.batch_size)
evaluator = COCOEvaluator(dataloader=val_loader, img_size=input_shape, confthre=0.01, nmsthre=0.65, num_classes=80, testdev=False)
*_, summary = evaluator.evaluate(session)
logger.info("\n" + summary)