movenet / eval_onnx.py
zihengg's picture
Upload 2 files
0babc3d
raw
history blame
18.5 kB
import onnxruntime as rt
import numpy as np
import json
import torch
import cv2
import os
from torch.utils.data.dataset import Dataset
import random
import math
import argparse
# Constants and paths defining model, image, and dataset specifics
MODEL_DIR = './movenet_int8.onnx' # Path to the MoveNet model
IMG_SIZE = 192 # Image size used for processing
FEATURE_MAP_SIZE = 48 # Feature map size used in the model
CENTER_WEIGHT_ORIGIN_PATH = './center_weight_origin.npy' # Path to center weight origin file
DATASET_PATH = '/group/dphi_algo_scratch_02/ziheng/datasets/coco/croped' # Base path for the dataset
EVAL_LABLE_PATH = os.path.join(DATASET_PATH, "val2017.json") # Path to validation labels JSON file
EVAL_IMG_PATH = os.path.join(DATASET_PATH, 'imgs') # Path to validation images
def getDist(pre, labels):
"""
Calculate the Euclidean distance between predicted and labeled keypoints.
Args:
pre: Predicted keypoints [batchsize, 14]
labels: Labeled keypoints [batchsize, 14]
Returns:
dist: Distance between keypoints [batchsize, 7]
"""
pre = pre.reshape([-1, 17, 2])
labels = labels.reshape([-1, 17, 2])
res = np.power(pre[:,:,0]-labels[:,:,0],2)+np.power(pre[:,:,1]-labels[:,:,1],2)
return res
def getAccRight(dist, th = 5/IMG_SIZE):
"""
Compute accuracy for each keypoint based on a threshold.
Args:
dist: Distance between keypoints [batchsize, 7]
th: Threshold for accuracy computation
Returns:
res: Accuracy per keypoint [7,] representing the count of correct predictions
"""
res = np.zeros(dist.shape[1], dtype=np.int64)
for i in range(dist.shape[1]):
res[i] = sum(dist[:,i]<th)
return res
def myAcc(output, target):
'''
Compute accuracy across keypoints.
Args:
output: Predicted keypoints
target: Labeled keypoints
Returns:
cate_acc: Categorical accuracy [7,] representing the count of correct predictions per keypoint
'''
# [h, ls, rs, lb, rb, lr, rr]
# output[:,6:10] = output[:,6:10]+output[:,2:6]
# output[:,10:14] = output[:,10:14]+output[:,6:10]
# Calculate distance between predicted and labeled keypoints
dist = getDist(output, target)
# Calculate accuracy for each keypoint
cate_acc = getAccRight(dist)
return cate_acc
# Predefined numpy arrays and weights for calculations
_range_weight_x = np.array([[x for x in range(FEATURE_MAP_SIZE)] for _ in range(FEATURE_MAP_SIZE)])
_range_weight_y = _range_weight_x.T
_center_weight = np.load(CENTER_WEIGHT_ORIGIN_PATH).reshape(FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)
def maxPoint(heatmap, center=True):
"""
Find the coordinates of maximum values in a heatmap.
Args:
heatmap: Input heatmap data
center: Flag to indicate whether to consider center-weighted points
Returns:
x, y: Coordinates of maximum values in the heatmap
"""
if len(heatmap.shape) == 3:
batch_size,h,w = heatmap.shape
c = 1
elif len(heatmap.shape) == 4:
# n,c,h,w
batch_size,c,h,w = heatmap.shape
if center:
heatmap = heatmap*_center_weight#加权取最靠近中间的
heatmap = heatmap.reshape((batch_size,c, -1)) #64,c, cfg['feature_map_size']xcfg['feature_map_size']
max_id = np.argmax(heatmap,2)#64,c, 1
y = max_id//w
x = max_id%w
# bv
return x,y
# Function for decoding MoveNet output data
def movenetDecode(data, kps_mask=None,mode='output', num_joints = 17,
img_size=192, hm_th=0.1):
##data [64, 7, 48, 48] [64, 1, 48, 48] [64, 14, 48, 48] [64, 14, 48, 48]
#kps_mask [n, 7]
if mode == 'output':
batch_size = data[0].shape[0]
heatmaps = data[0]
heatmaps[heatmaps < hm_th] = 0
centers = data[1]
regs = data[2]
offsets = data[3]
cx,cy = maxPoint(centers)
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1)
dim1 = np.zeros((batch_size,1),dtype=np.int32)
res = []
for n in range(num_joints):
#nchw!!!!!!!!!!!!!!!!!
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32)
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32)
reg_x = reg_x_origin+cx
reg_y = reg_y_origin+cy
### for post process
reg_x = np.reshape(reg_x, (reg_x.shape[0],1,1))
reg_y = np.reshape(reg_y, (reg_y.shape[0],1,1))
reg_x = reg_x.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2)
reg_y = reg_y.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2)
#### 根据center得到关键点回归位置,然后加权heatmap
range_weight_x = np.reshape(_range_weight_x,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0)
range_weight_y = np.reshape(_range_weight_y,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0)
tmp_reg_x = (range_weight_x-reg_x)**2
tmp_reg_y = (range_weight_y-reg_y)**2
tmp_reg = (tmp_reg_x+tmp_reg_y)**0.5+1.8#origin 1.8
tmp_reg = heatmaps[:,n,...]/tmp_reg
tmp_reg = tmp_reg[:,np.newaxis,:,:]
reg_x,reg_y = maxPoint(tmp_reg, center=False)
reg_x[reg_x>47] = 47
reg_x[reg_x<0] = 0
reg_y[reg_y>47] = 47
reg_y[reg_y<0] = 0
score = heatmaps[dim0,dim1+n,reg_y,reg_x]
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x]#*img_size//4
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x]#*img_size//4
res_x = (reg_x+offset_x)/(img_size//4)
res_y = (reg_y+offset_y)/(img_size//4)
res_x[score<hm_th] = -1
res_y[score<hm_th] = -1
res.extend([res_x, res_y])
# b
res = np.concatenate(res,axis=1) #bs*14
elif mode == 'label':
kps_mask = kps_mask.detach().cpu().numpy()
data = data.detach().cpu().numpy()
batch_size = data.shape[0]
heatmaps = data[:,:17,:,:]
centers = data[:,17:18,:,:]
regs = data[:,18:52,:,:]
offsets = data[:,52:,:,:]
cx,cy = maxPoint(centers)
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1)
dim1 = np.zeros((batch_size,1),dtype=np.int32)
res = []
for n in range(num_joints):
#nchw!!!!!!!!!!!!!!!!!
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32)
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32)
reg_x = reg_x_origin+cx
reg_y = reg_y_origin+cy
# print(reg_x, reg_y)
reg_x[reg_x>47] = 47
reg_x[reg_x<0] = 0
reg_y[reg_y>47] = 47
reg_y[reg_y<0] = 0
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x]#*img_size//4
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x]#*img_size//4
# print(offset_x,offset_y)
res_x = (reg_x+offset_x)/(img_size//4)
res_y = (reg_y+offset_y)/(img_size//4)
#不存在的点设为-1 后续不参与acc计算
res_x[kps_mask[:,n]==0] = -1
res_y[kps_mask[:,n]==0] = -1
res.extend([res_x, res_y])
# b
res = np.concatenate(res,axis=1) #bs*14
return res
# Function to convert labeled keypoints to heatmaps for keypoints
def label2heatmap(keypoints, other_keypoints, img_size):
#keypoints: target person
#other_keypoints: other people's keypoints need to be add to the heatmap
heatmaps = []
keypoints_range = np.reshape(keypoints,(-1,3))
keypoints_range = keypoints_range[keypoints_range[:,2]>0]
# print(keypoints_range)
min_x = np.min(keypoints_range[:,0])
min_y = np.min(keypoints_range[:,1])
max_x = np.max(keypoints_range[:,0])
max_y = np.max(keypoints_range[:,1])
area = (max_y-min_y)*(max_x-min_x)
sigma = 3
if area < 0.16:
sigma = 3
elif area < 0.3:
sigma = 5
else:
sigma = 7
for i in range(0,len(keypoints),3):
if keypoints[i+2]==0:
heatmaps.append(np.zeros((img_size//4, img_size//4)))
continue
x = int(keypoints[i]*img_size//4) #取值应该是0-47
y = int(keypoints[i+1]*img_size//4)
if x==img_size//4:x=(img_size//4-1)
if y==img_size//4:y=(img_size//4-1)
if x>img_size//4 or x<0:x=-1
if y>img_size//4 or y<0:y=-1
heatmap = generate_heatmap(x, y, other_keypoints[i//3], (img_size//4, img_size//4),sigma)
heatmaps.append(heatmap)
heatmaps = np.array(heatmaps, dtype=np.float32)
return heatmaps,sigma
# Function to generate a heatmap for a specific keypoint
def generate_heatmap(x, y, other_keypoints, size, sigma):
#x,y abs postion
#other_keypoints positive position
sigma+=6
heatmap = np.zeros(size)
if x<0 or y<0 or x>=size[0] or y>=size[1]:
return heatmap
tops = [[x,y]]
if len(other_keypoints)>0:
#add other people's keypoints
for i in range(len(other_keypoints)):
x = int(other_keypoints[i][0]*size[0])
y = int(other_keypoints[i][1]*size[1])
if x==size[0]:x=(size[0]-1)
if y==size[1]:y=(size[1]-1)
if x>size[0] or x<0 or y>size[1] or y<0: continue
tops.append([x,y])
for top in tops:
#heatmap[top[1]][top[0]] = 1
x,y = top
x0 = max(0,x-sigma//2)
x1 = min(size[0],x+sigma//2)
y0 = max(0,y-sigma//2)
y1 = min(size[1],y+sigma//2)
for map_y in range(y0, y1):
for map_x in range(x0, x1):
d2 = ((map_x - x) ** 2 + (map_y - y) ** 2)**0.5
if d2<=sigma//2:
heatmap[map_y, map_x] += math.exp(-d2/(sigma//2)*3)
if heatmap[map_y, map_x] > 1:
#不同关键点可能重合,这里累加
heatmap[map_y, map_x] = 1
# heatmap[heatmap<0.1] = 0
return heatmap
# Function to convert labeled keypoints to a center heatmap
def label2center(cx, cy, other_centers, img_size, sigma):
heatmaps = []
heatmap = generate_heatmap(cx, cy, other_centers, (img_size//4, img_size//4),sigma+2)
heatmaps.append(heatmap)
heatmaps = np.array(heatmaps, dtype=np.float32)
return heatmaps
# Function to convert labeled keypoints to regression maps
def label2reg(keypoints, cx, cy, img_size):
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32)
# print(keypoints)
for i in range(len(keypoints)//3):
if keypoints[i*3+2]==0:
continue
x = keypoints[i*3]*img_size//4
y = keypoints[i*3+1]*img_size//4
if x==img_size//4:x=(img_size//4-1)
if y==img_size//4:y=(img_size//4-1)
if x>img_size//4 or x<0 or y>img_size//4 or y<0:
continue
reg_x = x-cx
reg_y = y-cy
for j in range(cy-2,cy+3):
if j<0 or j>img_size//4-1:
continue
for k in range(cx-2,cx+3):
if k<0 or k>img_size//4-1:
continue
if cx<img_size//4/2-1:
heatmaps[i*2][j][k] = reg_x-(cx-k)#/(img_size//4)
else:
heatmaps[i*2][j][k] = reg_x+(cx-k)#/(img_size//4)
if cy<img_size//4/2-1:
heatmaps[i*2+1][j][k] = reg_y-(cy-j)#/(img_size//4)
else:
heatmaps[i*2+1][j][k] = reg_y+(cy-j)
return heatmaps
# Function to convert labeled keypoints to offset maps
def label2offset(keypoints, cx, cy, regs, img_size):
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32)
for i in range(len(keypoints)//3):
if keypoints[i*3+2]==0:
continue
large_x = int(keypoints[i*3]*img_size)
large_y = int(keypoints[i*3+1]*img_size)
small_x = int(regs[i*2,cy,cx]+cx)
small_y = int(regs[i*2+1,cy,cx]+cy)
offset_x = large_x/4-small_x
offset_y = large_y/4-small_y
if small_x==img_size//4:small_x=(img_size//4-1)
if small_y==img_size//4:small_y=(img_size//4-1)
if small_x>img_size//4 or small_x<0 or small_y>img_size//4 or small_y<0:
continue
heatmaps[i*2][small_y][small_x] = offset_x#/(img_size//4)
heatmaps[i*2+1][small_y][small_x] = offset_y#/(img_size//4)
return heatmaps
# Custom Dataset class for handling data loading and preprocessing
class TensorDataset(Dataset):
def __init__(self, data_labels, img_dir, img_size, data_aug=None):
self.data_labels = data_labels
self.img_dir = img_dir
self.data_aug = data_aug
self.img_size = img_size
self.interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA,
cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
def __getitem__(self, index):
item = self.data_labels[index]
"""
item = {
"img_name":save_name,
"keypoints":save_keypoints,
"center":save_center,
"other_centers":other_centers,
"other_keypoints":other_keypoints,
}
"""
# [name,h,w,keypoints...]
img_path = os.path.join(self.img_dir, item["img_name"])
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (self.img_size, self.img_size),
interpolation=random.choice(self.interp_methods))
#### Data Augmentation
if self.data_aug is not None:
img, item = self.data_aug(img, item)
img = img.astype(np.float32)
img = np.transpose(img,axes=[2,0,1])
keypoints = item["keypoints"]
center = item['center']
other_centers = item["other_centers"]
other_keypoints = item["other_keypoints"]
kps_mask = np.ones(len(keypoints)//3)
for i in range(len(keypoints)//3):
##0没有标注;1有标注不可见(被遮挡);2有标注可见
if keypoints[i*3+2]==0:
kps_mask[i] = 0
heatmaps,sigma = label2heatmap(keypoints, other_keypoints, self.img_size) #(17, 48, 48)
cx = min(max(0,int(center[0]*self.img_size//4)),self.img_size//4-1)
cy = min(max(0,int(center[1]*self.img_size//4)),self.img_size//4-1)
centers = label2center(cx, cy, other_centers, self.img_size, sigma) #(1, 48, 48)
regs = label2reg(keypoints, cx, cy, self.img_size) #(14, 48, 48)
offsets = label2offset(keypoints, cx, cy, regs, self.img_size)#(14, 48, 48)
labels = np.concatenate([heatmaps,centers,regs,offsets],axis=0)
img = img / 127.5 - 1.0
return img, labels, kps_mask, img_path
def __len__(self):
return len(self.data_labels)
# Function to get data loader based on mode (e.g., evaluation)
def getDataLoader(mode, input_data):
if mode=="eval":
val_loader = torch.utils.data.DataLoader(
TensorDataset(input_data[0],
EVAL_IMG_PATH,
IMG_SIZE,
),
batch_size=1,
shuffle=False,
num_workers=0,
pin_memory=False)
return val_loader
# Class for managing data and obtaining evaluation data loader
class Data():
def __init__(self):
pass
def getEvalDataloader(self):
with open(EVAL_LABLE_PATH, 'r') as f:
data_label_list = json.loads(f.readlines()[0])
print("[INFO] Total images: ", len(data_label_list))
input_data = [data_label_list]
data_loader = getDataLoader("eval",
input_data)
return data_loader
# Configs for onnx inference session
def make_parser():
parser = argparse.ArgumentParser("movenet onnxruntime inference")
parser.add_argument(
"--ipu",
action="store_true",
help="Use IPU for inference.",
)
parser.add_argument(
"--provider_config",
type=str,
default="vaip_config.json",
help="Path of the config file for seting provider_options.",
)
return parser.parse_args()
if __name__ == '__main__':
args = make_parser()
if args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": args.provider_config}]
else:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
provider_options = None
# Get evaluation data loader using the Data class
data = Data()
data_loader = data.getEvalDataloader()
# Load MoveNet model using ONNX runtime
model = rt.InferenceSession(MODEL_DIR, providers=providers, provider_options=provider_options)
correct = 0
total = 0
# Loop through the data loader for evaluation
for batch_idx, (imgs, labels, kps_mask, img_names) in enumerate(data_loader):
if batch_idx%100 == 0:
print('Finish ',batch_idx)
imgs = imgs.detach().cpu().numpy()
imgs = imgs.transpose((0,2,3,1))
output = model.run(['1548_transpose','1607_transpose','1665_transpose','1723_transpose'],{'blob.1':imgs})
output[0] = output[0].transpose((0,3,1,2))
output[1] = output[1].transpose((0,3,1,2))
output[2] = output[2].transpose((0,3,1,2))
output[3] = output[3].transpose((0,3,1,2))
pre = movenetDecode(output, kps_mask,mode='output',img_size=IMG_SIZE)
gt = movenetDecode(labels, kps_mask,mode='label',img_size=IMG_SIZE)
#n
acc = myAcc(pre, gt)
correct += sum(acc)
total += len(acc)
# Compute and print accuracy based on evaluated data
acc = correct/total
print('[Info] acc: {:.3f}% \n'.format(100. * acc))