Mingyuyang-1 commited on
Commit
b2324c7
·
1 Parent(s): 30a8ac1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -18
README.md CHANGED
@@ -104,24 +104,25 @@ python benchmark/llm_eval/lm_harness_eval.py \
104
  X-EcoMLA was evaluated on the Language Model Harness benchmark for zero-shot tasks and compared against its base model and other post-training methods. The results demonstrate that Zebra-Llama provides a superior balance of performance and efficiency.
105
  | Tasks | Metric | Llama-3.2-3B-Instruct | X-EcoMLA-3B3B-fixed-kv816-DPO | X-EcoMLA-3B3B-dynamic-0.95-DPO |
106
  |-------------------|----------|----------------: |----------------: |----------------:|
107
- | arc_challenge | acc | 0.3575 (±0.0140) | 0.3643 (±0.0141) | 0.3686 (±0.0141)|
108
- | | acc_norm | 0.3797 (±0.0142) | 0.3993 (±0.0143) | 0.4121 (±0.0144)|
109
- | arc_easy | acc | 0.6843 (±0.0095) | 0.6873 (±0.0095) | 0.6932 (±0.0095)|
110
- | | acc_norm | 0.6351 (±0.0099) | 0.6389 (±0.0099) | 0.6486 (±0.0098)|
111
- | hellaswag | acc | 0.4506 (±0.0050) | 0.4483 (±0.0050) | 0.4459 (±0.0050)|
112
- | | acc_norm | 0.6077 (±0.0049) | 0.6073 (±0.0049) | 0.6096 (±0.0049)|
113
- | mmlu | acc | 0.4609 (±0.0918) | 0.4239 (±0.0785) | 0.4286 (±0.0809)|
114
- | - humanities | acc | 0.4397 (±0.0763) | 0.4064 (±0.0663) | 0.4013 (±0.0733)|
115
- | - other | acc | 0.5204 (±0.0868) | 0.4583 (±0.0760) | 0.4747 (±0.0774)|
116
- | - social_sciences | acc | 0.5109 (±0.0843) | 0.4686 (±0.0735) | 0.4729 (±0.0734)|
117
- | - stem | acc | 0.3850 (±0.0900) | 0.3723 (±0.0818) | 0.3806 (±0.0798)|
118
- | openbookqa | acc | 0.2440 (±0.0192) | 0.2560 (±0.0195) | 0.2660 (±0.0198)|
119
- | | acc_norm | 0.3500 (±0.0214) | 0.3780 (±0.0217) | 0.3760 (±0.0217)|
120
- | piqa | acc | 0.7405 (±0.0102) | 0.7443 (±0.0102) | 0.7301 (±0.0104)|
121
- | | acc_norm | 0.7437 (±0.0102) | 0.7492 (±0.0101) | 0.7443 (±0.0102)|
122
- | pubmedqa | acc | 0.6020 (±0.0219) | 0.5880 (±0.0220) | 0.5860 (±0.0220)|
123
- | race | acc | 0.3809 (±0.0150) | 0.4077 (±0.0152) | 0.3923 (±0.0151)|
124
- | winogrande | acc | 0.5967 (±0.0138) | 0.6054 (±0.0137) | 0.5833 (±0.0139)|
 
125
 
126
  ## Conclusion
127
  X-EcoMLA demonstrates an efficient technique to upcycle pre-trained Transformers into MLA modules to compress KV cache. This work highlights the viability of post-training hybridization as a cost-effective and environmentally sustainable alternative to full retraining, paving the way for the deployment of powerful LLMs in resource-constrained environments.
 
104
  X-EcoMLA was evaluated on the Language Model Harness benchmark for zero-shot tasks and compared against its base model and other post-training methods. The results demonstrate that Zebra-Llama provides a superior balance of performance and efficiency.
105
  | Tasks | Metric | Llama-3.2-3B-Instruct | X-EcoMLA-3B3B-fixed-kv816-DPO | X-EcoMLA-3B3B-dynamic-0.95-DPO |
106
  |-------------------|----------|----------------: |----------------: |----------------:|
107
+ | arc_challenge | acc | 0.4369±0.0145 | 0.4753±0.0146 | 0.4710±0.0146 |
108
+ | | acc_norm | 0.4590±0.0146 | 0.4821±0.0146 | 0.4846±0.0146 |
109
+ | arc_easy | acc | 0.7428±0.0090 | 0.7660±0.0087 | 0.7580±0.0088 |
110
+ | | acc_norm | 0.6776±0.0096 | 0.7045±0.0094 | 0.6999±0.0094 |
111
+ | hellaswag | acc | 0.5222±0.0050 | 0.5288±0.0050 | 0.5320±0.0050 |
112
+ | | acc_norm | 0.7036±0.0046 | 0.7224±0.0045 | 0.7226±0.0045 |
113
+ | mmlu | acc | 0.6046±0.1057 | 0.5742±0.1014 | 0.5773±0.1028 |
114
+ | - humanities | acc | 0.5926±0.0826 | 0.5507±0.0843 | 0.5518±0.0851 |
115
+ | - other | acc | 0.6598±0.1118 | 0.6312±0.1011 | 0.6344±0.1070 |
116
+ | - social_sciences | acc | 0.6701±0.0712 | 0.6383±0.0741 | 0.6422±0.0765 |
117
+ | - stem | acc | 0.5043±0.1122 | 0.4906±0.1089 | 0.4960±0.1071 |
118
+ | openbookqa | acc | 0.2740±0.0200 | 0.2920±0.0204 | 0.3000±0.0205 |
119
+ | | acc_norm | 0.3620±0.0215 | 0.3840±0.0218 | 0.3940±0.0219 |
120
+ | piqa | acc | 0.7606±0.0100 | 0.7573±0.0100 | 0.7579±0.0100 |
121
+ | | acc_norm | 0.7557±0.0100 | 0.7655±0.0099 | 0.7579±0.0100 |
122
+ | pubmedqa | acc | 0.6960±0.0206 | 0.6680±0.0211 | 0.6840±0.0208 |
123
+ | race | acc | 0.4077±0.0152 | 0.4622±0.0154 | 0.4632±0.0154 |
124
+ | winogrande | acc | 0.6717±0.0132 | 0.6859±0.0130 | 0.6590±0.0133 |
125
+
126
 
127
  ## Conclusion
128
  X-EcoMLA demonstrates an efficient technique to upcycle pre-trained Transformers into MLA modules to compress KV cache. This work highlights the viability of post-training hybridization as a cost-effective and environmentally sustainable alternative to full retraining, paving the way for the deployment of powerful LLMs in resource-constrained environments.