Stella Laurenzo
commited on
Commit
•
82e06d6
1
Parent(s):
4241729
Initial add of unet/int8 model.
Browse files- .gitattributes +3 -0
- unet/int8/config.json +69 -0
- unet/int8/params.safetensors +3 -0
- unet/int8/quant_params.json +3 -0
- unet/int8/reference/math_model.py +126 -0
- unet/int8/reference/test_quant_conv2d.py +39 -0
- unet/int8/reference/test_quant_linear.py +35 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
quant_param.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
quant_params.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
unet/int8/quant_params.json filter=lfs diff=lfs merge=lfs -text
|
unet/int8/config.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.19.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"addition_embed_type": "text_time",
|
6 |
+
"addition_embed_type_num_heads": 64,
|
7 |
+
"addition_time_embed_dim": 256,
|
8 |
+
"attention_head_dim": [
|
9 |
+
5,
|
10 |
+
10,
|
11 |
+
20
|
12 |
+
],
|
13 |
+
"block_out_channels": [
|
14 |
+
320,
|
15 |
+
640,
|
16 |
+
1280
|
17 |
+
],
|
18 |
+
"center_input_sample": false,
|
19 |
+
"class_embed_type": null,
|
20 |
+
"class_embeddings_concat": false,
|
21 |
+
"conv_in_kernel": 3,
|
22 |
+
"conv_out_kernel": 3,
|
23 |
+
"cross_attention_dim": 2048,
|
24 |
+
"cross_attention_norm": null,
|
25 |
+
"down_block_types": [
|
26 |
+
"DownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"CrossAttnDownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dual_cross_attention": false,
|
32 |
+
"encoder_hid_dim": null,
|
33 |
+
"encoder_hid_dim_type": null,
|
34 |
+
"flip_sin_to_cos": true,
|
35 |
+
"freq_shift": 0,
|
36 |
+
"in_channels": 4,
|
37 |
+
"layers_per_block": 2,
|
38 |
+
"mid_block_only_cross_attention": null,
|
39 |
+
"mid_block_scale_factor": 1,
|
40 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
41 |
+
"norm_eps": 1e-05,
|
42 |
+
"norm_num_groups": 32,
|
43 |
+
"num_attention_heads": null,
|
44 |
+
"num_class_embeds": null,
|
45 |
+
"only_cross_attention": false,
|
46 |
+
"out_channels": 4,
|
47 |
+
"projection_class_embeddings_input_dim": 2816,
|
48 |
+
"resnet_out_scale_factor": 1.0,
|
49 |
+
"resnet_skip_time_act": false,
|
50 |
+
"resnet_time_scale_shift": "default",
|
51 |
+
"sample_size": 128,
|
52 |
+
"time_cond_proj_dim": null,
|
53 |
+
"time_embedding_act_fn": null,
|
54 |
+
"time_embedding_dim": null,
|
55 |
+
"time_embedding_type": "positional",
|
56 |
+
"timestep_post_act": null,
|
57 |
+
"transformer_layers_per_block": [
|
58 |
+
1,
|
59 |
+
2,
|
60 |
+
10
|
61 |
+
],
|
62 |
+
"up_block_types": [
|
63 |
+
"CrossAttnUpBlock2D",
|
64 |
+
"CrossAttnUpBlock2D",
|
65 |
+
"UpBlock2D"
|
66 |
+
],
|
67 |
+
"upcast_attention": null,
|
68 |
+
"use_linear_projection": true
|
69 |
+
}
|
unet/int8/params.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1047f8e694b0ce7d2fb0754b519b1d3aa7c316bfe74900474f69a261d0077fc7
|
3 |
+
size 5136204272
|
unet/int8/quant_params.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbc5f010261abb44cf5c149fc1471cb6cfc272d4c5e94cfdbfd80c9f9d52eb39
|
3 |
+
size 85103981
|
unet/int8/reference/math_model.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def quantize(tensor, scale, zero_point, is_asym=False):
|
5 |
+
if is_asym:
|
6 |
+
clamp_min, clamp_max = torch.tensor(0.), torch.tensor(255.)
|
7 |
+
else:
|
8 |
+
clamp_min, clamp_max = torch.tensor(-128.), torch.tensor(127.)
|
9 |
+
quant_tensor = torch.clamp(torch.round(tensor/scale + zero_point), clamp_min, clamp_max)
|
10 |
+
return quant_tensor
|
11 |
+
|
12 |
+
def dequantize(tensor, scale, zero_point):
|
13 |
+
return (tensor - zero_point) * scale
|
14 |
+
|
15 |
+
|
16 |
+
class QuantLinear(nn.Module):
|
17 |
+
def __init__(self, in_ch, out_ch, quant_param):
|
18 |
+
super().__init__()
|
19 |
+
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
20 |
+
self.register_buffer('mul_factor', mul_factor)
|
21 |
+
self.linear = nn.Linear(in_ch, out_ch)
|
22 |
+
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
23 |
+
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
24 |
+
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
25 |
+
input_zp = torch.tensor(quant_param['input_zp']).view(quant_param['input_zp_shape'])
|
26 |
+
self.register_buffer('weight_scale', weight_scale)
|
27 |
+
self.register_buffer('weight_zp', weight_zp)
|
28 |
+
self.register_buffer('input_scale', input_scale)
|
29 |
+
self.register_buffer('input_zp', input_zp)
|
30 |
+
|
31 |
+
# I.e., "fake quantization"
|
32 |
+
def qdq_forward(self, x):
|
33 |
+
scaled_x = x * self.mul_factor
|
34 |
+
quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
35 |
+
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
36 |
+
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
37 |
+
dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp)
|
38 |
+
out = torch.nn.functional.linear(dequantized_input, dequantized_weight, self.linear.bias)
|
39 |
+
return out
|
40 |
+
|
41 |
+
# Accelerated version
|
42 |
+
def qop_forward(self, x):
|
43 |
+
# With an integer linear kernel, if the weight zero point is not zero,
|
44 |
+
# A correction term must be calculated to correct the output.
|
45 |
+
# The correction term calculated as follows:
|
46 |
+
# - sum the input tensor across the dot-product dimentions: (e.g., `torch.sum(quant_input, dim=-1)`)
|
47 |
+
# - multiply this sum with every weight zero-point (e.g., `torch.sum(quant_input, dim=-1) * self.weight_zp`
|
48 |
+
# - Subtract from previous output (e.g., `quant_output -= torch.sum(quant_input, dim=-1) * self.weight_zp`)
|
49 |
+
# - All other code is just to make sure the broadcasting semantics work correctly
|
50 |
+
weight_zp_int8 = (self.weight_zp - 128).to(torch.int8).to(torch.float32) # Conversion from uint8 -> int8, can be computed offline
|
51 |
+
quant_weight = quantize(self.linear.weight, self.weight_scale, weight_zp_int8, is_asym=False).to(torch.int8)
|
52 |
+
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
53 |
+
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
54 |
+
quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
|
55 |
+
correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) * weight_zp_int8.to(torch.int8).view([1]*(quant_input.ndim-1) + [self.weight_zp.nelement()]) # Correct for weight zero-point
|
56 |
+
quant_output = quant_output - correction
|
57 |
+
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1]*(quant_output.ndim-1) + [(self.weight_scale * self.input_scale).nelement()]), 0.0)
|
58 |
+
output += self.linear.bias
|
59 |
+
return output
|
60 |
+
|
61 |
+
def forward(self, x, qop=False):
|
62 |
+
if qop:
|
63 |
+
return self.qop_forward(x)
|
64 |
+
else:
|
65 |
+
return self.qdq_forward(x)
|
66 |
+
|
67 |
+
class QuantConv2d(nn.Module):
|
68 |
+
def __init__(self, in_ch, out_ch, kernel_size, quant_param):
|
69 |
+
super().__init__()
|
70 |
+
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
71 |
+
self.register_buffer('mul_factor', mul_factor)
|
72 |
+
self.conv2d = nn.Conv2d(in_ch, out_ch, kernel_size)
|
73 |
+
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
74 |
+
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
75 |
+
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
76 |
+
input_zp = torch.tensor(quant_param['input_zp']).view(quant_param['input_zp_shape'])
|
77 |
+
self.register_buffer('weight_scale', weight_scale)
|
78 |
+
self.register_buffer('weight_zp', weight_zp)
|
79 |
+
self.register_buffer('input_scale', input_scale)
|
80 |
+
self.register_buffer('input_zp', input_zp)
|
81 |
+
|
82 |
+
# I.e., "fake quantization"
|
83 |
+
def qdq_forward(self, x):
|
84 |
+
scaled_x = x * self.mul_factor
|
85 |
+
quant_weight = quantize(self.conv2d.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
86 |
+
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
87 |
+
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
88 |
+
dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp)
|
89 |
+
out = torch.nn.functional.conv2d(dequantized_input, dequantized_weight, self.conv2d.bias)
|
90 |
+
return out
|
91 |
+
|
92 |
+
# Accelerated version
|
93 |
+
def qop_forward(self, x):
|
94 |
+
# With an integer conv2d kernel, if the weight zero point is not zero,
|
95 |
+
# A correction term must be calculated to correct the output.
|
96 |
+
# Conceptually, it's identical to the linear case except that it's difficult
|
97 |
+
# to reduce the input across the dot-product dimension. This leaves us with two obvious options:
|
98 |
+
# 1. Manually compute the reduction via Im2Col -> `torch.sum`
|
99 |
+
# 2. Add an extra _output channel_ to the convolution with a kernel made from all ones (e.g., `torch.ones()`)
|
100 |
+
# In this example, I've used option #2.
|
101 |
+
# The correction term is then calculated as follows:
|
102 |
+
# - Add an extra output channel to the weight tensor with all values equal to 1 to calculate the sum (e.g., `torch.cat((quant_weight, torch.ones(shape)), dim=0)`)
|
103 |
+
# - Extract the sum from the output tensor (e.g., `sum = quant_output[:,-1,:,:]`)
|
104 |
+
# - multiply this sum with every weight zero-point (e.g., `sum * self.weight_zp`
|
105 |
+
# - Subtract from previous output (e.g., `quant_output -= sum * self.weight_zp`)
|
106 |
+
# - All other code is just to make sure the broadcasting semantics work correctly
|
107 |
+
weight_zp_int8 = (self.weight_zp - 128).to(torch.int8).to(torch.float32) # Conversion from uint8 -> int8, can be computed offline
|
108 |
+
quant_weight = quantize(self.conv2d.weight, self.weight_scale, weight_zp_int8, is_asym=False).to(torch.int8)
|
109 |
+
b_shape = list(quant_weight.shape) # Used for weight zero-point correction
|
110 |
+
b_shape[0] = 1 # Used for weight zero-point correction
|
111 |
+
weight_cat = torch.ones((1,1,1,1)).broadcast_to(b_shape).to(torch.int8) # Used for weight zero-point correction
|
112 |
+
quant_weight = torch.cat((quant_weight,weight_cat),dim=0).to(torch.int8) # Create extra output channel, used for weight zero-point correction
|
113 |
+
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
114 |
+
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
115 |
+
quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
|
116 |
+
correction = quant_output[:,-1,:,:] * weight_zp_int8.to(torch.int8).view([1, self.weight_zp.nelement()] + [1]*(quant_output.ndim-2)) # Correct zero-point for weight
|
117 |
+
quant_output = quant_output[:,:-1,:,:] - correction
|
118 |
+
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1, (self.weight_scale * self.input_scale).nelement()] + [1]*(quant_output.ndim-2)), 0.0)
|
119 |
+
output += self.conv2d.bias.view([1, self.conv2d.bias.nelement()] + [1]*(quant_output.ndim-2))
|
120 |
+
return output
|
121 |
+
|
122 |
+
def forward(self, x, qop=False):
|
123 |
+
if qop:
|
124 |
+
return self.qop_forward(x)
|
125 |
+
else:
|
126 |
+
return self.qdq_forward(x)
|
unet/int8/reference/test_quant_conv2d.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from math_model import QuantConv2d
|
4 |
+
|
5 |
+
torch.manual_seed(0)
|
6 |
+
|
7 |
+
batch_size = 1
|
8 |
+
out_ch = 128
|
9 |
+
in_ch = 64
|
10 |
+
k = 3
|
11 |
+
h = 5
|
12 |
+
w = 5
|
13 |
+
|
14 |
+
i = 2*torch.rand((batch_size,in_ch,h,w)) - 1.
|
15 |
+
l = nn.Conv2d(in_ch, out_ch, k, bias=True)
|
16 |
+
|
17 |
+
quant_params = {
|
18 |
+
'smoothquant_mul': torch.rand((in_ch,)),
|
19 |
+
'smoothquant_mul_shape': (1,in_ch,1,1),
|
20 |
+
'weight_scale': torch.rand((out_ch,)),
|
21 |
+
'weight_scale': torch.max(torch.abs(torch.flatten(l.weight, start_dim=1)), dim=1).values / 128.,
|
22 |
+
'weight_scale_shape': (out_ch,1,1,1),
|
23 |
+
'weight_zp': torch.clamp(torch.round((torch.mean((l.weight), dim=(1,2,3))) * (128 / torch.max(torch.abs(torch.flatten(l.weight, start_dim=1)), dim=1).values)) + 128, 0, 255),
|
24 |
+
'weight_zp_shape': (out_ch,1,1,1),
|
25 |
+
'input_scale': torch.max(torch.abs(i)) / 128.,
|
26 |
+
'input_scale_shape': tuple(),
|
27 |
+
'input_zp': torch.zeros((1,)),
|
28 |
+
'input_zp_shape': tuple(),
|
29 |
+
}
|
30 |
+
|
31 |
+
print(quant_params)
|
32 |
+
|
33 |
+
ql = QuantConv2d(in_ch, out_ch, k, quant_params)
|
34 |
+
ql.conv2d.load_state_dict(l.state_dict())
|
35 |
+
o_qdq = ql(i)
|
36 |
+
o_qop = ql(i, qop=True)
|
37 |
+
print(o_qdq.shape)
|
38 |
+
print(o_qop.shape)
|
39 |
+
print(o_qdq - o_qop)
|
unet/int8/reference/test_quant_linear.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from math_model import QuantLinear
|
4 |
+
|
5 |
+
torch.manual_seed(0)
|
6 |
+
|
7 |
+
batch_size = 1
|
8 |
+
out_ch = 128
|
9 |
+
in_ch = 64
|
10 |
+
|
11 |
+
i = 2*torch.rand((batch_size,in_ch)) - 1.
|
12 |
+
l = nn.Linear(in_ch, out_ch, bias=True)
|
13 |
+
|
14 |
+
quant_params = {
|
15 |
+
'smoothquant_mul': torch.rand((in_ch,)),
|
16 |
+
'smoothquant_mul_shape': (1,in_ch),
|
17 |
+
'weight_scale': torch.max(torch.abs(l.weight), dim=1).values / 128.,
|
18 |
+
'weight_scale_shape': (out_ch,1),
|
19 |
+
'weight_zp': torch.clamp(torch.round((torch.mean((l.weight), dim=1)) * (128 / torch.max(torch.abs(l.weight), dim=1).values)) + 128, 0, 255),
|
20 |
+
'weight_zp_shape': (out_ch,1),
|
21 |
+
'input_scale': torch.max(torch.abs(i)) / 128.,
|
22 |
+
'input_scale_shape': tuple(),
|
23 |
+
'input_zp': torch.zeros((1,)),
|
24 |
+
'input_zp_shape': tuple(),
|
25 |
+
}
|
26 |
+
|
27 |
+
print(quant_params)
|
28 |
+
|
29 |
+
ql = QuantLinear(in_ch, out_ch, quant_params)
|
30 |
+
ql.linear.load_state_dict(l.state_dict())
|
31 |
+
o_qdq = ql(i)
|
32 |
+
o_qop = ql(i, qop=True)
|
33 |
+
print(o_qdq.shape)
|
34 |
+
print(o_qop.shape)
|
35 |
+
print(o_qdq - o_qop)
|