amazingvince
commited on
Commit
•
d572741
1
Parent(s):
f015c86
Update modeling_custom_seq2seq_llm.py
Browse files- modeling_custom_seq2seq_llm.py +1090 -16
modeling_custom_seq2seq_llm.py
CHANGED
@@ -3,13 +3,1033 @@ import torch.nn as nn
|
|
3 |
from torch.nn import CrossEntropyLoss
|
4 |
from transformers.modeling_outputs import Seq2SeqLMOutput
|
5 |
from transformers.activations import ACT2FN
|
6 |
-
from flash_atten import MHA # Import the MHA class from the provided implementation
|
7 |
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
8 |
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
9 |
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
|
10 |
from transformers import PreTrainedModel, PretrainedConfig
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class RMSNorm(nn.Module):
|
@@ -106,6 +1126,24 @@ class CustomSeq2SeqLLM(PreTrainedModel):
|
|
106 |
|
107 |
def get_output_embeddings(self):
|
108 |
return self.lm_head
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
def forward(
|
111 |
self,
|
@@ -166,6 +1204,57 @@ class CustomSeq2SeqLLM(PreTrainedModel):
|
|
166 |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
167 |
shifted_input_ids[..., 0] = self.config.pad_token_id
|
168 |
return shifted_input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
class CustomEncoder(nn.Module):
|
171 |
def __init__(self, config):
|
@@ -260,18 +1349,3 @@ class DecoderLayer(nn.Module):
|
|
260 |
|
261 |
return hidden_states
|
262 |
|
263 |
-
class FeedForward(nn.Module):
|
264 |
-
def __init__(self, config):
|
265 |
-
super().__init__()
|
266 |
-
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
267 |
-
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
268 |
-
self.act = ACT2FN[config.hidden_act]
|
269 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
270 |
-
|
271 |
-
def forward(self, x):
|
272 |
-
x = self.fc1(x)
|
273 |
-
x = self.act(x)
|
274 |
-
x = self.dropout(x)
|
275 |
-
x = self.fc2(x)
|
276 |
-
x = self.dropout(x)
|
277 |
-
return x
|
|
|
3 |
from torch.nn import CrossEntropyLoss
|
4 |
from transformers.modeling_outputs import Seq2SeqLMOutput
|
5 |
from transformers.activations import ACT2FN
|
|
|
6 |
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
7 |
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
8 |
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
|
9 |
from transformers import PreTrainedModel, PretrainedConfig
|
10 |
|
11 |
|
12 |
+
# Copyright (c) 2023, Tri Dao.
|
13 |
+
|
14 |
+
import math
|
15 |
+
import os
|
16 |
+
from functools import partial
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
from einops import rearrange, repeat
|
21 |
+
|
22 |
+
from flash_attn.utils.distributed import get_dim_for_local_rank
|
23 |
+
|
24 |
+
try:
|
25 |
+
from flash_attn import (
|
26 |
+
flash_attn_kvpacked_func,
|
27 |
+
flash_attn_qkvpacked_func,
|
28 |
+
flash_attn_varlen_kvpacked_func,
|
29 |
+
flash_attn_varlen_qkvpacked_func,
|
30 |
+
flash_attn_with_kvcache,
|
31 |
+
)
|
32 |
+
except ImportError:
|
33 |
+
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
|
34 |
+
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
|
35 |
+
flash_attn_with_kvcache = None
|
36 |
+
|
37 |
+
try:
|
38 |
+
from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear
|
39 |
+
except ImportError:
|
40 |
+
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
41 |
+
|
42 |
+
try:
|
43 |
+
from flash_attn.layers.rotary import RotaryEmbedding
|
44 |
+
except ImportError:
|
45 |
+
RotaryEmbedding = None
|
46 |
+
|
47 |
+
|
48 |
+
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
|
49 |
+
def get_alibi_slopes(nheads):
|
50 |
+
def get_slopes_power_of_2(nheads):
|
51 |
+
start = 2 ** (-(2 ** -(math.log2(nheads) - 3)))
|
52 |
+
ratio = start
|
53 |
+
return [start * ratio**i for i in range(nheads)]
|
54 |
+
|
55 |
+
if math.log2(nheads).is_integer():
|
56 |
+
return get_slopes_power_of_2(nheads)
|
57 |
+
else:
|
58 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(nheads))
|
59 |
+
return (
|
60 |
+
get_slopes_power_of_2(closest_power_of_2)
|
61 |
+
+ get_alibi_slopes(2 * closest_power_of_2)[0::2][: nheads - closest_power_of_2]
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
class FlashSelfAttention(nn.Module):
|
66 |
+
"""Implement the scaled dot product attention with softmax.
|
67 |
+
Arguments
|
68 |
+
---------
|
69 |
+
softmax_scale: The temperature to use for the softmax attention.
|
70 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
71 |
+
runtime)
|
72 |
+
attention_dropout: The dropout rate to apply to the attention
|
73 |
+
(default: 0.0)
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
causal=False,
|
79 |
+
softmax_scale=None,
|
80 |
+
attention_dropout=0.0,
|
81 |
+
window_size=(-1, -1),
|
82 |
+
alibi_slopes=None,
|
83 |
+
deterministic=False,
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
|
87 |
+
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
|
88 |
+
self.causal = causal
|
89 |
+
self.softmax_scale = softmax_scale
|
90 |
+
self.drop = nn.Dropout(attention_dropout)
|
91 |
+
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
92 |
+
self.window_size = window_size
|
93 |
+
self.deterministic = deterministic
|
94 |
+
|
95 |
+
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
|
96 |
+
"""Implements the multihead softmax attention.
|
97 |
+
Arguments
|
98 |
+
---------
|
99 |
+
qkv: The tensor containing the query, key, and value.
|
100 |
+
If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
|
101 |
+
If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
|
102 |
+
(total, 3, H, D), where total is the sum of the sequence lengths in the batch.
|
103 |
+
causal: if passed, will override self.causal
|
104 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
105 |
+
of the sequences in the batch, used to index into qkv.
|
106 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
107 |
+
Returns:
|
108 |
+
--------
|
109 |
+
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
|
110 |
+
else (B, S, H, D).
|
111 |
+
"""
|
112 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
113 |
+
assert qkv.is_cuda
|
114 |
+
causal = self.causal if causal is None else causal
|
115 |
+
unpadded = cu_seqlens is not None
|
116 |
+
if self.alibi_slopes is not None:
|
117 |
+
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
118 |
+
if unpadded:
|
119 |
+
assert cu_seqlens.dtype == torch.int32
|
120 |
+
assert max_seqlen is not None
|
121 |
+
assert isinstance(max_seqlen, int)
|
122 |
+
return flash_attn_varlen_qkvpacked_func(
|
123 |
+
qkv,
|
124 |
+
cu_seqlens,
|
125 |
+
max_seqlen,
|
126 |
+
self.drop.p if self.training else 0.0,
|
127 |
+
softmax_scale=self.softmax_scale,
|
128 |
+
causal=causal,
|
129 |
+
alibi_slopes=self.alibi_slopes,
|
130 |
+
window_size=self.window_size,
|
131 |
+
deterministic=self.deterministic,
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
return flash_attn_qkvpacked_func(
|
135 |
+
qkv,
|
136 |
+
self.drop.p if self.training else 0.0,
|
137 |
+
softmax_scale=self.softmax_scale,
|
138 |
+
causal=causal,
|
139 |
+
alibi_slopes=self.alibi_slopes,
|
140 |
+
window_size=self.window_size,
|
141 |
+
deterministic=self.deterministic,
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
class FlashCrossAttention(nn.Module):
|
146 |
+
"""Implement the scaled dot product attention with softmax.
|
147 |
+
Arguments
|
148 |
+
---------
|
149 |
+
softmax_scale: The temperature to use for the softmax attention.
|
150 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
151 |
+
runtime)
|
152 |
+
attention_dropout: The dropout rate to apply to the attention
|
153 |
+
(default: 0.0)
|
154 |
+
"""
|
155 |
+
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
causal=False,
|
159 |
+
softmax_scale=None,
|
160 |
+
attention_dropout=0.0,
|
161 |
+
alibi_slopes=None,
|
162 |
+
window_size=(-1, -1),
|
163 |
+
deterministic=False,
|
164 |
+
):
|
165 |
+
super().__init__()
|
166 |
+
assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
|
167 |
+
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
|
168 |
+
self.causal = causal
|
169 |
+
self.softmax_scale = softmax_scale
|
170 |
+
self.drop = nn.Dropout(attention_dropout)
|
171 |
+
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
172 |
+
self.window_size = window_size
|
173 |
+
self.deterministic = deterministic
|
174 |
+
|
175 |
+
def forward(
|
176 |
+
self,
|
177 |
+
q,
|
178 |
+
kv,
|
179 |
+
causal=None,
|
180 |
+
cu_seqlens=None,
|
181 |
+
max_seqlen=None,
|
182 |
+
cu_seqlens_k=None,
|
183 |
+
max_seqlen_k=None,
|
184 |
+
):
|
185 |
+
"""Implements the multihead softmax attention.
|
186 |
+
Arguments
|
187 |
+
---------
|
188 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
189 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
190 |
+
causal: if passed, will override self.causal
|
191 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
192 |
+
of the sequences in the batch, used to index into q.
|
193 |
+
max_seqlen: int. Maximum sequence length in the batch of q.
|
194 |
+
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
195 |
+
of the sequences in the batch, used to index into kv.
|
196 |
+
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
|
197 |
+
"""
|
198 |
+
assert q.dtype in [torch.float16, torch.bfloat16]
|
199 |
+
assert q.is_cuda and kv.is_cuda
|
200 |
+
causal = self.causal if causal is None else causal
|
201 |
+
unpadded = cu_seqlens is not None
|
202 |
+
if self.alibi_slopes is not None:
|
203 |
+
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
204 |
+
if unpadded:
|
205 |
+
assert cu_seqlens.dtype == torch.int32
|
206 |
+
assert max_seqlen is not None
|
207 |
+
assert isinstance(max_seqlen, int)
|
208 |
+
assert cu_seqlens_k is not None
|
209 |
+
assert cu_seqlens_k.dtype == torch.int32
|
210 |
+
assert max_seqlen_k is not None
|
211 |
+
assert isinstance(max_seqlen_k, int)
|
212 |
+
return flash_attn_varlen_kvpacked_func(
|
213 |
+
q,
|
214 |
+
kv,
|
215 |
+
cu_seqlens,
|
216 |
+
cu_seqlens_k,
|
217 |
+
max_seqlen,
|
218 |
+
max_seqlen_k,
|
219 |
+
self.drop.p if self.training else 0.0,
|
220 |
+
softmax_scale=self.softmax_scale,
|
221 |
+
causal=causal,
|
222 |
+
alibi_slopes=self.alibi_slopes,
|
223 |
+
window_size=self.window_size,
|
224 |
+
deterministic=self.deterministic,
|
225 |
+
)
|
226 |
+
else:
|
227 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
228 |
+
seqlen_k = kv.shape[1]
|
229 |
+
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
|
230 |
+
return flash_attn_kvpacked_func(
|
231 |
+
q,
|
232 |
+
kv,
|
233 |
+
self.drop.p if self.training else 0.0,
|
234 |
+
causal=causal,
|
235 |
+
softmax_scale=self.softmax_scale,
|
236 |
+
alibi_slopes=self.alibi_slopes,
|
237 |
+
window_size=self.window_size,
|
238 |
+
deterministic=self.deterministic,
|
239 |
+
)
|
240 |
+
|
241 |
+
|
242 |
+
class SelfAttention(nn.Module):
|
243 |
+
"""Implement the scaled dot product attention with softmax.
|
244 |
+
Arguments
|
245 |
+
---------
|
246 |
+
softmax_scale: The temperature to use for the softmax attention.
|
247 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
248 |
+
runtime)
|
249 |
+
attention_dropout: The dropout rate to apply to the attention
|
250 |
+
(default: 0.0)
|
251 |
+
"""
|
252 |
+
|
253 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
254 |
+
super().__init__()
|
255 |
+
self.causal = causal
|
256 |
+
self.softmax_scale = softmax_scale
|
257 |
+
self.drop = nn.Dropout(attention_dropout)
|
258 |
+
|
259 |
+
def forward(self, qkv, causal=None, key_padding_mask=None):
|
260 |
+
"""Implements the multihead softmax attention.
|
261 |
+
Arguments
|
262 |
+
---------
|
263 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
264 |
+
causal: if passed, will override self.causal
|
265 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
266 |
+
False means to mask out. (B, S)
|
267 |
+
"""
|
268 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
269 |
+
causal = self.causal if causal is None else causal
|
270 |
+
q, k, v = qkv.unbind(dim=2)
|
271 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
272 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
273 |
+
if key_padding_mask is not None:
|
274 |
+
padding_mask = torch.full(
|
275 |
+
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
|
276 |
+
)
|
277 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
278 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
279 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
280 |
+
if causal:
|
281 |
+
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
282 |
+
# So we have to construct the mask in float
|
283 |
+
causal_mask = torch.triu(
|
284 |
+
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
|
285 |
+
)
|
286 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
287 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
288 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
289 |
+
attention_drop = self.drop(attention)
|
290 |
+
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
291 |
+
return output
|
292 |
+
|
293 |
+
|
294 |
+
class CrossAttention(nn.Module):
|
295 |
+
"""Implement the scaled dot product attention with softmax.
|
296 |
+
Arguments
|
297 |
+
---------
|
298 |
+
softmax_scale: The temperature to use for the softmax attention.
|
299 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
300 |
+
runtime)
|
301 |
+
attention_dropout: The dropout rate to apply to the attention
|
302 |
+
(default: 0.0)
|
303 |
+
"""
|
304 |
+
|
305 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
306 |
+
super().__init__()
|
307 |
+
self.causal = causal
|
308 |
+
self.softmax_scale = softmax_scale
|
309 |
+
self.drop = nn.Dropout(attention_dropout)
|
310 |
+
|
311 |
+
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
312 |
+
"""Implements the multihead softmax attention.
|
313 |
+
Arguments
|
314 |
+
---------
|
315 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
316 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
317 |
+
causal: if passed, will override self.causal
|
318 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
319 |
+
False means to mask out. (B, Sk)
|
320 |
+
"""
|
321 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
322 |
+
causal = self.causal if causal is None else causal
|
323 |
+
seqlen_k = kv.shape[1]
|
324 |
+
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
|
325 |
+
if kv.shape[3] != q.shape[2]: # MQA/GQA
|
326 |
+
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
327 |
+
k, v = kv.unbind(dim=2)
|
328 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
329 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
330 |
+
if key_padding_mask is not None:
|
331 |
+
padding_mask = torch.full(
|
332 |
+
(batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device
|
333 |
+
)
|
334 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
335 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
336 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
337 |
+
if causal:
|
338 |
+
# causal mask needs to take into account the difference between seqlen_q and seqlen_k
|
339 |
+
row_idx = rearrange(
|
340 |
+
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
|
341 |
+
)
|
342 |
+
col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long)
|
343 |
+
sk = (
|
344 |
+
seqlen_k
|
345 |
+
if key_padding_mask is None
|
346 |
+
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
347 |
+
)
|
348 |
+
causal_mask = col_idx > row_idx + sk - seqlen_q
|
349 |
+
scores = scores.masked_fill(causal_mask, -10000.0)
|
350 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
351 |
+
attention_drop = self.drop(attention)
|
352 |
+
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
353 |
+
return output
|
354 |
+
|
355 |
+
|
356 |
+
class LinearResidual(nn.Linear):
|
357 |
+
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
|
358 |
+
|
359 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
360 |
+
return super().forward(input), input
|
361 |
+
|
362 |
+
|
363 |
+
def _update_kv_cache(kv, inference_params, layer_idx):
|
364 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
365 |
+
# Pre-allocate memory for key-values for inference.
|
366 |
+
num_heads, head_dim = kv.shape[-2:]
|
367 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
368 |
+
kv_cache = torch.empty(
|
369 |
+
inference_params.max_batch_size,
|
370 |
+
inference_params.max_seqlen,
|
371 |
+
2,
|
372 |
+
num_heads,
|
373 |
+
head_dim,
|
374 |
+
dtype=kv.dtype,
|
375 |
+
device=kv.device,
|
376 |
+
)
|
377 |
+
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
378 |
+
else:
|
379 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
380 |
+
# Adjust key and value for inference
|
381 |
+
batch_start = inference_params.batch_size_offset
|
382 |
+
batch_end = batch_start + kv.shape[0]
|
383 |
+
sequence_start = inference_params.seqlen_offset
|
384 |
+
sequence_end = sequence_start + kv.shape[1]
|
385 |
+
assert batch_end <= kv_cache.shape[0]
|
386 |
+
assert sequence_end <= kv_cache.shape[1]
|
387 |
+
assert kv_cache is not None
|
388 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
389 |
+
return kv_cache[batch_start:batch_end, :sequence_end, ...]
|
390 |
+
|
391 |
+
|
392 |
+
class MHA(nn.Module):
|
393 |
+
"""Multi-head self-attention and cross-attention"""
|
394 |
+
|
395 |
+
def __init__(
|
396 |
+
self,
|
397 |
+
embed_dim,
|
398 |
+
num_heads,
|
399 |
+
num_heads_kv=None,
|
400 |
+
cross_attn=False,
|
401 |
+
qkv_proj_bias=True,
|
402 |
+
out_proj_bias=True,
|
403 |
+
dropout=0.0,
|
404 |
+
softmax_scale=None,
|
405 |
+
causal=False,
|
406 |
+
layer_idx=None,
|
407 |
+
dwconv=False,
|
408 |
+
rotary_emb_dim=0,
|
409 |
+
rotary_emb_base=10000.0,
|
410 |
+
rotary_emb_scale_base=None,
|
411 |
+
rotary_emb_interleaved=False,
|
412 |
+
use_alibi=False,
|
413 |
+
window_size=(-1, -1),
|
414 |
+
fused_bias_fc=False,
|
415 |
+
use_flash_attn=False,
|
416 |
+
return_residual=False,
|
417 |
+
checkpointing=False,
|
418 |
+
device=None,
|
419 |
+
dtype=None,
|
420 |
+
) -> None:
|
421 |
+
"""
|
422 |
+
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
423 |
+
return_residual: whether to return the input x along with the output. This is for
|
424 |
+
performance reason: for post-norm architecture, returning the input allows us
|
425 |
+
to fuse the backward of nn.Linear with the residual connection.
|
426 |
+
"""
|
427 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
428 |
+
super().__init__()
|
429 |
+
self.embed_dim = embed_dim
|
430 |
+
self.cross_attn = cross_attn
|
431 |
+
self.causal = causal
|
432 |
+
self.layer_idx = layer_idx
|
433 |
+
self.dwconv = dwconv
|
434 |
+
self.rotary_emb_dim = rotary_emb_dim
|
435 |
+
self.use_flash_attn = use_flash_attn
|
436 |
+
self.return_residual = return_residual
|
437 |
+
self.checkpointing = checkpointing
|
438 |
+
if use_alibi:
|
439 |
+
assert use_flash_attn, "ALiBi code path requires flash_attn"
|
440 |
+
alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
|
441 |
+
else:
|
442 |
+
alibi_slopes = None
|
443 |
+
if window_size != (-1, -1):
|
444 |
+
assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn"
|
445 |
+
|
446 |
+
self.num_heads = num_heads
|
447 |
+
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
|
448 |
+
assert (
|
449 |
+
self.num_heads % self.num_heads_kv == 0
|
450 |
+
), "num_heads must be divisible by num_heads_kv"
|
451 |
+
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
|
452 |
+
self.head_dim = self.embed_dim // num_heads
|
453 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
454 |
+
kv_dim = 2 * self.head_dim * self.num_heads_kv
|
455 |
+
|
456 |
+
if self.rotary_emb_dim > 0:
|
457 |
+
assert not cross_attn, "MHA with rotary embedding does not support cross-attention yet"
|
458 |
+
assert RotaryEmbedding is not None, "rotary_emb is not installed"
|
459 |
+
self.rotary_emb = RotaryEmbedding(
|
460 |
+
self.rotary_emb_dim,
|
461 |
+
base=rotary_emb_base,
|
462 |
+
scale_base=rotary_emb_scale_base,
|
463 |
+
interleaved=rotary_emb_interleaved,
|
464 |
+
device=device,
|
465 |
+
)
|
466 |
+
|
467 |
+
if fused_bias_fc and FusedDense is None:
|
468 |
+
raise ImportError("fused_dense is not installed")
|
469 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
470 |
+
linear_resid_cls = (
|
471 |
+
LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
|
472 |
+
)
|
473 |
+
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
|
474 |
+
inner_attn_cls = (
|
475 |
+
partial(FlashSelfAttention, alibi_slopes=alibi_slopes, window_size=window_size)
|
476 |
+
if use_flash_attn
|
477 |
+
else SelfAttention
|
478 |
+
)
|
479 |
+
inner_cross_attn_cls = (
|
480 |
+
partial(FlashCrossAttention, alibi_slopes=alibi_slopes, window_size=window_size)
|
481 |
+
if use_flash_attn
|
482 |
+
else CrossAttention
|
483 |
+
)
|
484 |
+
if not self.cross_attn:
|
485 |
+
self.Wqkv = wqkv_cls(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
|
486 |
+
else:
|
487 |
+
self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
|
488 |
+
self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
|
489 |
+
if self.dwconv:
|
490 |
+
if self.num_heads_kv == self.num_heads:
|
491 |
+
self.dwconv_qkv = nn.Conv1d(
|
492 |
+
qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
|
493 |
+
)
|
494 |
+
else:
|
495 |
+
self.dwconv_q = nn.Conv1d(
|
496 |
+
embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
|
497 |
+
)
|
498 |
+
self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim)
|
499 |
+
self.inner_attn = inner_attn_cls(
|
500 |
+
causal=causal,
|
501 |
+
softmax_scale=softmax_scale,
|
502 |
+
attention_dropout=dropout,
|
503 |
+
)
|
504 |
+
self.inner_cross_attn = inner_cross_attn_cls(
|
505 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
506 |
+
)
|
507 |
+
self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
|
508 |
+
|
509 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
|
510 |
+
dtype = self.out_proj.weight.dtype if dtype is None else dtype
|
511 |
+
device = self.out_proj.weight.device
|
512 |
+
return torch.empty(
|
513 |
+
batch_size,
|
514 |
+
max_seqlen,
|
515 |
+
2,
|
516 |
+
self.num_heads_kv,
|
517 |
+
self.head_dim,
|
518 |
+
dtype=dtype,
|
519 |
+
device=device,
|
520 |
+
)
|
521 |
+
|
522 |
+
def _update_kv_cache(self, kv, inference_params):
|
523 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
524 |
+
assert not self.dwconv, "Generation does not support dwconv yet"
|
525 |
+
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
526 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
527 |
+
|
528 |
+
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
|
529 |
+
"""
|
530 |
+
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
|
531 |
+
q: (batch_size, seqlen_q, nheads, head_dim)
|
532 |
+
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
|
533 |
+
"""
|
534 |
+
assert inference_params is not None and inference_params.seqlen_offset > 0
|
535 |
+
assert self.use_flash_attn
|
536 |
+
if self.rotary_emb_dim > 0:
|
537 |
+
assert self.rotary_emb.scale is None, "This code path does not support xPos"
|
538 |
+
self.rotary_emb._update_cos_sin_cache(
|
539 |
+
inference_params.max_seqlen, device=q.device, dtype=q.dtype
|
540 |
+
)
|
541 |
+
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
|
542 |
+
else:
|
543 |
+
rotary_cos, rotary_sin = None, None
|
544 |
+
batch = q.shape[0]
|
545 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
546 |
+
cache_seqlens = (
|
547 |
+
inference_params.lengths_per_sample[:batch]
|
548 |
+
if inference_params.lengths_per_sample is not None
|
549 |
+
else inference_params.seqlen_offset
|
550 |
+
)
|
551 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
552 |
+
context = flash_attn_with_kvcache(
|
553 |
+
q,
|
554 |
+
kv_cache[:, :, 0],
|
555 |
+
kv_cache[:, :, 1],
|
556 |
+
kv[:, :, 0],
|
557 |
+
kv[:, :, 1],
|
558 |
+
rotary_cos=rotary_cos,
|
559 |
+
rotary_sin=rotary_sin,
|
560 |
+
cache_seqlens=cache_seqlens,
|
561 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
562 |
+
causal=self.inner_cross_attn.causal,
|
563 |
+
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
|
564 |
+
alibi_slopes=alibi_slopes,
|
565 |
+
)
|
566 |
+
return context
|
567 |
+
|
568 |
+
def _update_kvcache_attention(self, q, kv, inference_params):
|
569 |
+
"""Write kv to inference_params, then do attention"""
|
570 |
+
if (
|
571 |
+
inference_params.seqlen_offset == 0
|
572 |
+
or flash_attn_with_kvcache is None
|
573 |
+
or not self.use_flash_attn
|
574 |
+
):
|
575 |
+
# TODO: this only uses seqlen_offset and not lengths_per_sample.
|
576 |
+
kv = self._update_kv_cache(kv, inference_params)
|
577 |
+
return self.inner_cross_attn(q, kv)
|
578 |
+
else:
|
579 |
+
batch = q.shape[0]
|
580 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
581 |
+
cache_seqlens = (
|
582 |
+
inference_params.lengths_per_sample[:batch]
|
583 |
+
if inference_params.lengths_per_sample is not None
|
584 |
+
else inference_params.seqlen_offset
|
585 |
+
)
|
586 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
587 |
+
return flash_attn_with_kvcache(
|
588 |
+
q,
|
589 |
+
kv_cache[:, :, 0],
|
590 |
+
kv_cache[:, :, 1],
|
591 |
+
kv[:, :, 0],
|
592 |
+
kv[:, :, 1],
|
593 |
+
cache_seqlens=cache_seqlens,
|
594 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
595 |
+
causal=self.inner_cross_attn.causal,
|
596 |
+
alibi_slopes=alibi_slopes,
|
597 |
+
)
|
598 |
+
|
599 |
+
def forward(
|
600 |
+
self,
|
601 |
+
x,
|
602 |
+
x_kv=None,
|
603 |
+
key_padding_mask=None,
|
604 |
+
cu_seqlens=None,
|
605 |
+
max_seqlen=None,
|
606 |
+
mixer_subset=None,
|
607 |
+
inference_params=None,
|
608 |
+
**kwargs,
|
609 |
+
):
|
610 |
+
"""
|
611 |
+
Arguments:
|
612 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
613 |
+
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
614 |
+
is the is the sum of the sequence lengths in the batch.
|
615 |
+
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
616 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
617 |
+
of the sequences in the batch, used to index into x. Only applicable when using
|
618 |
+
FlashAttention.
|
619 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
620 |
+
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
621 |
+
(batch, seqlen). Only applicable when not using FlashAttention.
|
622 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
623 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
624 |
+
about the CLS token in the last layer.
|
625 |
+
inference_params: for generation. Adapted from Megatron-LM (and Apex)
|
626 |
+
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
|
627 |
+
"""
|
628 |
+
if cu_seqlens is not None:
|
629 |
+
assert max_seqlen is not None
|
630 |
+
assert key_padding_mask is None
|
631 |
+
assert self.use_flash_attn
|
632 |
+
assert not self.dwconv
|
633 |
+
assert self.rotary_emb_dim == 0
|
634 |
+
if key_padding_mask is not None:
|
635 |
+
assert cu_seqlens is None
|
636 |
+
assert max_seqlen is None
|
637 |
+
assert not self.use_flash_attn
|
638 |
+
if inference_params is not None:
|
639 |
+
assert key_padding_mask is None
|
640 |
+
assert cu_seqlens is None and max_seqlen is None
|
641 |
+
assert not self.dwconv
|
642 |
+
|
643 |
+
kwargs = (
|
644 |
+
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
|
645 |
+
if self.use_flash_attn
|
646 |
+
else {"key_padding_mask": key_padding_mask, **kwargs}
|
647 |
+
)
|
648 |
+
seqlen_offset = (
|
649 |
+
0
|
650 |
+
if inference_params is None
|
651 |
+
else (
|
652 |
+
inference_params.lengths_per_sample
|
653 |
+
if inference_params.lengths_per_sample is not None
|
654 |
+
else inference_params.seqlen_offset
|
655 |
+
)
|
656 |
+
)
|
657 |
+
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None
|
658 |
+
batch, seqlen = x.shape[:2]
|
659 |
+
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
660 |
+
assert x_kv is None and mixer_subset is None
|
661 |
+
if not self.return_residual:
|
662 |
+
qkv = self.Wqkv(x)
|
663 |
+
else:
|
664 |
+
qkv, x = self.Wqkv(x)
|
665 |
+
if self.dwconv:
|
666 |
+
qkv = rearrange(
|
667 |
+
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
668 |
+
).contiguous()
|
669 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
670 |
+
if (
|
671 |
+
inference_params is None
|
672 |
+
or inference_params.seqlen_offset == 0
|
673 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
674 |
+
or not self.use_flash_attn
|
675 |
+
):
|
676 |
+
if self.rotary_emb_dim > 0:
|
677 |
+
qkv = self.rotary_emb(
|
678 |
+
qkv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
|
679 |
+
)
|
680 |
+
if inference_params is None:
|
681 |
+
if not self.checkpointing:
|
682 |
+
context = self.inner_attn(qkv, **kwargs)
|
683 |
+
else:
|
684 |
+
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
|
685 |
+
else:
|
686 |
+
context = self._update_kvcache_attention(
|
687 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
688 |
+
)
|
689 |
+
else:
|
690 |
+
context = self._apply_rotary_update_kvcache_attention(
|
691 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
692 |
+
)
|
693 |
+
else:
|
694 |
+
if self.cross_attn:
|
695 |
+
if not self.return_residual:
|
696 |
+
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
697 |
+
kv = self.Wkv(x_kv if x_kv is not None else x)
|
698 |
+
else:
|
699 |
+
if x_kv is not None:
|
700 |
+
kv, x_kv = self.Wkv(x_kv)
|
701 |
+
else:
|
702 |
+
kv, x = self.Wkv(x)
|
703 |
+
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
704 |
+
else:
|
705 |
+
assert self.num_heads_kv != self.num_heads
|
706 |
+
if not self.return_residual:
|
707 |
+
qkv = self.Wqkv(x)
|
708 |
+
else:
|
709 |
+
qkv, x = self.Wqkv(x)
|
710 |
+
q = qkv[..., : self.num_heads * self.head_dim]
|
711 |
+
kv = qkv[..., self.num_heads * self.head_dim :]
|
712 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
713 |
+
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
714 |
+
if self.dwconv:
|
715 |
+
q = rearrange(
|
716 |
+
self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
717 |
+
).contiguous()
|
718 |
+
kv = rearrange(
|
719 |
+
self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
720 |
+
).contiguous()
|
721 |
+
if (
|
722 |
+
inference_params is None
|
723 |
+
or inference_params.seqlen_offset == 0
|
724 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
725 |
+
or not self.use_flash_attn
|
726 |
+
):
|
727 |
+
if self.rotary_emb_dim > 0:
|
728 |
+
q, kv = self.rotary_emb(
|
729 |
+
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
|
730 |
+
)
|
731 |
+
if inference_params is None:
|
732 |
+
if not self.checkpointing:
|
733 |
+
context = self.inner_cross_attn(q, kv, **kwargs)
|
734 |
+
else:
|
735 |
+
context = torch.utils.checkpoint.checkpoint(
|
736 |
+
self.inner_cross_attn, q, kv, **kwargs
|
737 |
+
)
|
738 |
+
else:
|
739 |
+
context = self._update_kvcache_attention(q, kv, inference_params)
|
740 |
+
else:
|
741 |
+
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
742 |
+
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
|
743 |
+
return out if not self.return_residual else (out, x)
|
744 |
+
|
745 |
+
|
746 |
+
class ParallelMHA(nn.Module):
|
747 |
+
"""Multi-head self-attention and cross-attention"""
|
748 |
+
|
749 |
+
def __init__(
|
750 |
+
self,
|
751 |
+
embed_dim,
|
752 |
+
num_heads,
|
753 |
+
process_group,
|
754 |
+
num_heads_kv=None,
|
755 |
+
qkv_proj_bias=True,
|
756 |
+
out_proj_bias=True,
|
757 |
+
dropout=0.0,
|
758 |
+
softmax_scale=None,
|
759 |
+
causal=False,
|
760 |
+
layer_idx=None,
|
761 |
+
rotary_emb_dim=0,
|
762 |
+
rotary_emb_base=10000.0,
|
763 |
+
rotary_emb_scale_base=None,
|
764 |
+
rotary_emb_interleaved=False,
|
765 |
+
use_alibi=False,
|
766 |
+
window_size=(-1, -1),
|
767 |
+
use_flash_attn=False,
|
768 |
+
checkpointing=False,
|
769 |
+
sequence_parallel=True,
|
770 |
+
device=None,
|
771 |
+
dtype=None,
|
772 |
+
) -> None:
|
773 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
774 |
+
super().__init__()
|
775 |
+
self.embed_dim = embed_dim
|
776 |
+
self.causal = causal
|
777 |
+
self.layer_idx = layer_idx
|
778 |
+
self.rotary_emb_dim = rotary_emb_dim
|
779 |
+
self.use_flash_attn = use_flash_attn
|
780 |
+
self.checkpointing = checkpointing
|
781 |
+
self.process_group = process_group
|
782 |
+
self.world_size = process_group.size()
|
783 |
+
self.local_rank = torch.distributed.get_rank(process_group)
|
784 |
+
|
785 |
+
self.num_heads = num_heads
|
786 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
787 |
+
|
788 |
+
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
|
789 |
+
assert (
|
790 |
+
self.num_heads % self.num_heads_kv == 0
|
791 |
+
), "num_heads must be divisible by num_heads_kv"
|
792 |
+
|
793 |
+
self.num_heads_per_rank = get_dim_for_local_rank(
|
794 |
+
self.num_heads, self.world_size, self.local_rank
|
795 |
+
)
|
796 |
+
self.num_heads_kv_per_rank = get_dim_for_local_rank(
|
797 |
+
self.num_heads_kv, self.world_size, self.local_rank
|
798 |
+
)
|
799 |
+
self.head_dim = self.embed_dim // num_heads
|
800 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
801 |
+
|
802 |
+
if use_alibi:
|
803 |
+
assert use_flash_attn, "ALiBi code path requires flash_attn"
|
804 |
+
num_heads_local = math.ceil(self.num_heads / self.world_size)
|
805 |
+
alibi_slopes = torch.tensor(
|
806 |
+
get_alibi_slopes(num_heads)[
|
807 |
+
self.local_rank * num_heads_local : (self.local_rank + 1) * num_heads_local
|
808 |
+
],
|
809 |
+
device=device,
|
810 |
+
)
|
811 |
+
else:
|
812 |
+
alibi_slopes = None
|
813 |
+
if window_size != (-1, -1):
|
814 |
+
assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn"
|
815 |
+
|
816 |
+
if self.rotary_emb_dim > 0:
|
817 |
+
assert RotaryEmbedding is not None, "rotary_emb is not installed"
|
818 |
+
self.rotary_emb = RotaryEmbedding(
|
819 |
+
self.rotary_emb_dim,
|
820 |
+
base=rotary_emb_base,
|
821 |
+
scale_base=rotary_emb_scale_base,
|
822 |
+
interleaved=rotary_emb_interleaved,
|
823 |
+
device=device,
|
824 |
+
)
|
825 |
+
|
826 |
+
if ColumnParallelLinear is None or RowParallelLinear is None:
|
827 |
+
raise ImportError("fused_dense is not installed")
|
828 |
+
self.Wqkv = ColumnParallelLinear(
|
829 |
+
embed_dim,
|
830 |
+
qkv_dim,
|
831 |
+
process_group,
|
832 |
+
bias=qkv_proj_bias,
|
833 |
+
sequence_parallel=sequence_parallel,
|
834 |
+
multiple_of=self.head_dim * (self.num_heads // self.num_heads_kv + 2),
|
835 |
+
**factory_kwargs,
|
836 |
+
)
|
837 |
+
inner_attn_cls = (
|
838 |
+
partial(FlashSelfAttention, alibi_slopes=alibi_slopes, window_size=window_size)
|
839 |
+
if use_flash_attn
|
840 |
+
else SelfAttention
|
841 |
+
)
|
842 |
+
inner_cross_attn_cls = (
|
843 |
+
partial(FlashCrossAttention, alibi_slopes=alibi_slopes, window_size=window_size)
|
844 |
+
if use_flash_attn
|
845 |
+
else CrossAttention
|
846 |
+
)
|
847 |
+
self.inner_attn = inner_attn_cls(
|
848 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
849 |
+
)
|
850 |
+
self.inner_cross_attn = inner_cross_attn_cls(
|
851 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
852 |
+
)
|
853 |
+
self.out_proj = RowParallelLinear(
|
854 |
+
embed_dim,
|
855 |
+
embed_dim,
|
856 |
+
process_group,
|
857 |
+
bias=out_proj_bias,
|
858 |
+
sequence_parallel=sequence_parallel,
|
859 |
+
multiple_of=self.head_dim,
|
860 |
+
**factory_kwargs,
|
861 |
+
)
|
862 |
+
|
863 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
|
864 |
+
dtype = self.out_proj.weight.dtype if dtype is None else dtype
|
865 |
+
device = self.out_proj.weight.device
|
866 |
+
return torch.empty(
|
867 |
+
batch_size,
|
868 |
+
max_seqlen,
|
869 |
+
2,
|
870 |
+
self.num_heads_kv_per_rank,
|
871 |
+
self.head_dim,
|
872 |
+
dtype=dtype,
|
873 |
+
device=device,
|
874 |
+
)
|
875 |
+
|
876 |
+
def _update_kv_cache(self, kv, inference_params):
|
877 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
878 |
+
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
879 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
880 |
+
|
881 |
+
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
|
882 |
+
"""
|
883 |
+
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
|
884 |
+
q: (batch_size, seqlen_q, nheads, head_dim)
|
885 |
+
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
|
886 |
+
"""
|
887 |
+
assert inference_params is not None and inference_params.seqlen_offset > 0
|
888 |
+
assert self.use_flash_attn
|
889 |
+
if self.rotary_emb_dim > 0:
|
890 |
+
assert self.rotary_emb.scale is None, "This code path does not support xPos"
|
891 |
+
self.rotary_emb._update_cos_sin_cache(
|
892 |
+
inference_params.max_seqlen, device=q.device, dtype=q.dtype
|
893 |
+
)
|
894 |
+
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
|
895 |
+
else:
|
896 |
+
rotary_cos, rotary_sin = None, None
|
897 |
+
batch = q.shape[0]
|
898 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
899 |
+
cache_seqlens = (
|
900 |
+
inference_params.lengths_per_sample[:batch]
|
901 |
+
if inference_params.lengths_per_sample is not None
|
902 |
+
else inference_params.seqlen_offset
|
903 |
+
)
|
904 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
905 |
+
context = flash_attn_with_kvcache(
|
906 |
+
q,
|
907 |
+
kv_cache[:, :, 0],
|
908 |
+
kv_cache[:, :, 1],
|
909 |
+
kv[:, :, 0],
|
910 |
+
kv[:, :, 1],
|
911 |
+
rotary_cos=rotary_cos,
|
912 |
+
rotary_sin=rotary_sin,
|
913 |
+
cache_seqlens=cache_seqlens,
|
914 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
915 |
+
causal=self.inner_cross_attn.causal,
|
916 |
+
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
|
917 |
+
alibi_slopes=alibi_slopes,
|
918 |
+
)
|
919 |
+
return context
|
920 |
+
|
921 |
+
def _update_kvcache_attention(self, q, kv, inference_params):
|
922 |
+
"""Write kv to inference_params, then do attention"""
|
923 |
+
if inference_params.seqlen_offset == 0 or not self.use_flash_attn:
|
924 |
+
# TODO: this only uses seqlen_offset and not lengths_per_sample.
|
925 |
+
kv = self._update_kv_cache(kv, inference_params)
|
926 |
+
return self.inner_cross_attn(q, kv)
|
927 |
+
else:
|
928 |
+
batch = q.shape[0]
|
929 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
930 |
+
cache_seqlens = (
|
931 |
+
inference_params.lengths_per_sample[:batch]
|
932 |
+
if inference_params.lengths_per_sample is not None
|
933 |
+
else inference_params.seqlen_offset
|
934 |
+
)
|
935 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
936 |
+
context = flash_attn_with_kvcache(
|
937 |
+
q,
|
938 |
+
kv_cache[:, :, 0],
|
939 |
+
kv_cache[:, :, 1],
|
940 |
+
kv[:, :, 0],
|
941 |
+
kv[:, :, 1],
|
942 |
+
cache_seqlens=cache_seqlens,
|
943 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
944 |
+
causal=self.inner_cross_attn.causal,
|
945 |
+
alibi_slopes=alibi_slopes,
|
946 |
+
)
|
947 |
+
return context
|
948 |
+
|
949 |
+
def forward(self, x, seqlen=None, inference_params=None, **kwargs):
|
950 |
+
"""
|
951 |
+
Arguments:
|
952 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None.
|
953 |
+
If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we
|
954 |
+
split x during sequence parallel, we split the batch * seqlen dimension
|
955 |
+
(in case batch is small).
|
956 |
+
"""
|
957 |
+
qkv = self.Wqkv(x)
|
958 |
+
if seqlen is not None:
|
959 |
+
qkv = rearrange(qkv, "(b s) ... -> b s ...", s=seqlen)
|
960 |
+
seqlen_offset = (
|
961 |
+
0
|
962 |
+
if inference_params is None
|
963 |
+
else (
|
964 |
+
inference_params.lengths_per_sample
|
965 |
+
if inference_params.lengths_per_sample is not None
|
966 |
+
else inference_params.seqlen_offset
|
967 |
+
)
|
968 |
+
)
|
969 |
+
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None
|
970 |
+
if self.num_heads_kv == self.num_heads:
|
971 |
+
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, d=self.head_dim)
|
972 |
+
if (
|
973 |
+
inference_params is None
|
974 |
+
or inference_params.seqlen_offset == 0
|
975 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
976 |
+
or not self.use_flash_attn
|
977 |
+
):
|
978 |
+
if self.rotary_emb_dim > 0:
|
979 |
+
qkv = self.rotary_emb(
|
980 |
+
qkv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
|
981 |
+
)
|
982 |
+
if inference_params is None:
|
983 |
+
if not self.checkpointing:
|
984 |
+
context = self.inner_attn(qkv, **kwargs)
|
985 |
+
else:
|
986 |
+
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
|
987 |
+
else:
|
988 |
+
context = self._update_kvcache_attention(
|
989 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
990 |
+
)
|
991 |
+
else:
|
992 |
+
context = self._apply_rotary_update_kvcache_attention(
|
993 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
994 |
+
)
|
995 |
+
else:
|
996 |
+
q = rearrange(
|
997 |
+
qkv[..., : self.num_heads_per_rank * self.head_dim],
|
998 |
+
"... (h d) -> ... h d",
|
999 |
+
d=self.head_dim,
|
1000 |
+
)
|
1001 |
+
kv = rearrange(
|
1002 |
+
qkv[..., self.num_heads_per_rank * self.head_dim :],
|
1003 |
+
"... (two hkv d) -> ... two hkv d",
|
1004 |
+
two=2,
|
1005 |
+
d=self.head_dim,
|
1006 |
+
)
|
1007 |
+
if (
|
1008 |
+
inference_params is None
|
1009 |
+
or inference_params.seqlen_offset == 0
|
1010 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
1011 |
+
or not self.use_flash_attn
|
1012 |
+
):
|
1013 |
+
if self.rotary_emb_dim > 0:
|
1014 |
+
q, kv = self.rotary_emb(
|
1015 |
+
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
|
1016 |
+
)
|
1017 |
+
if inference_params is None:
|
1018 |
+
if not self.checkpointing:
|
1019 |
+
context = self.inner_cross_attn(q, kv, **kwargs)
|
1020 |
+
else:
|
1021 |
+
context = torch.utils.checkpoint.checkpoint(
|
1022 |
+
self.inner_cross_attn, q, kv, **kwargs
|
1023 |
+
)
|
1024 |
+
else:
|
1025 |
+
context = self._update_kvcache_attention(q, kv, inference_params)
|
1026 |
+
else:
|
1027 |
+
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
1028 |
+
context = rearrange(context, "b s h d -> b s (h d)")
|
1029 |
+
if seqlen is not None:
|
1030 |
+
context = rearrange(context, "b s d -> (b s) d")
|
1031 |
+
out = self.out_proj(context)
|
1032 |
+
return out
|
1033 |
|
1034 |
|
1035 |
class RMSNorm(nn.Module):
|
|
|
1126 |
|
1127 |
def get_output_embeddings(self):
|
1128 |
return self.lm_head
|
1129 |
+
|
1130 |
+
def set_output_embeddings(self, new_embeddings):
|
1131 |
+
self.lm_head = new_embeddings
|
1132 |
+
|
1133 |
+
def prepare_inputs_for_generation(
|
1134 |
+
self, input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
1135 |
+
):
|
1136 |
+
# Cut decoder_input_ids if past is used
|
1137 |
+
if past is not None:
|
1138 |
+
input_ids = input_ids[:, -1:]
|
1139 |
+
|
1140 |
+
return {
|
1141 |
+
"decoder_input_ids": input_ids,
|
1142 |
+
"past_key_values": past,
|
1143 |
+
"encoder_outputs": encoder_outputs,
|
1144 |
+
"attention_mask": attention_mask,
|
1145 |
+
"use_cache": use_cache,
|
1146 |
+
}
|
1147 |
|
1148 |
def forward(
|
1149 |
self,
|
|
|
1204 |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
1205 |
shifted_input_ids[..., 0] = self.config.pad_token_id
|
1206 |
return shifted_input_ids
|
1207 |
+
|
1208 |
+
def save_pretrained(self, save_directory, safe_serialization=True):
|
1209 |
+
# Save the config
|
1210 |
+
self.config.save_pretrained(save_directory)
|
1211 |
+
|
1212 |
+
# Prepare state dict
|
1213 |
+
state_dict = self.state_dict()
|
1214 |
+
|
1215 |
+
# Handle shared weights
|
1216 |
+
if self.config.tie_word_embeddings:
|
1217 |
+
state_dict["lm_head.weight"] = state_dict["shared.weight"]
|
1218 |
+
|
1219 |
+
# Convert state_dict to CPU tensors
|
1220 |
+
cpu_state_dict = {k: v.cpu() for k, v in state_dict.items()}
|
1221 |
+
|
1222 |
+
if safe_serialization:
|
1223 |
+
# Save using safetensors
|
1224 |
+
safe_filepath = os.path.join(save_directory, "model.safetensors")
|
1225 |
+
save_file(cpu_state_dict, safe_filepath)
|
1226 |
+
else:
|
1227 |
+
# Save using PyTorch
|
1228 |
+
torch_filepath = os.path.join(save_directory, "pytorch_model.bin")
|
1229 |
+
torch.save(cpu_state_dict, torch_filepath)
|
1230 |
+
|
1231 |
+
@classmethod
|
1232 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
1233 |
+
config = kwargs.pop("config", None)
|
1234 |
+
state_dict = kwargs.pop("state_dict", None)
|
1235 |
+
|
1236 |
+
if config is None:
|
1237 |
+
config = cls.config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
1238 |
+
|
1239 |
+
model = cls(config)
|
1240 |
+
|
1241 |
+
if state_dict is None:
|
1242 |
+
# Try loading safetensors first
|
1243 |
+
safe_filepath = os.path.join(pretrained_model_name_or_path, "model.safetensors")
|
1244 |
+
if os.path.exists(safe_filepath):
|
1245 |
+
from safetensors.torch import load_file
|
1246 |
+
state_dict = load_file(safe_filepath)
|
1247 |
+
else:
|
1248 |
+
# Fall back to PyTorch format
|
1249 |
+
torch_filepath = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
1250 |
+
state_dict = torch.load(torch_filepath, map_location="cpu")
|
1251 |
+
|
1252 |
+
# Handle shared weights
|
1253 |
+
if config.tie_word_embeddings and "lm_head.weight" not in state_dict:
|
1254 |
+
state_dict["lm_head.weight"] = state_dict["shared.weight"]
|
1255 |
+
|
1256 |
+
model.load_state_dict(state_dict)
|
1257 |
+
return model
|
1258 |
|
1259 |
class CustomEncoder(nn.Module):
|
1260 |
def __init__(self, config):
|
|
|
1349 |
|
1350 |
return hidden_states
|
1351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|