Update export_to_onnx.py
Browse files- export_to_onnx.py +47 -0
export_to_onnx.py
CHANGED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
import onnxruntime as ort
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Constants
|
10 |
+
MODEL_NAME = "amaye15/DaViT-Florence-2-large-ft"
|
11 |
+
CACHE_DIR = os.getcwd()
|
12 |
+
PROMPT = "<OCR>"
|
13 |
+
IMAGE_URL = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
14 |
+
ONNX_MODEL_PATH = "model.onnx"
|
15 |
+
|
16 |
+
# Load the model and processor
|
17 |
+
model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True, cache_dir=CACHE_DIR)
|
18 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True, cache_dir=CACHE_DIR)
|
19 |
+
|
20 |
+
# Prepare the input
|
21 |
+
image = Image.open(requests.get(IMAGE_URL, stream=True).raw)
|
22 |
+
inputs = processor(text=PROMPT, images=image, return_tensors="pt")
|
23 |
+
|
24 |
+
# Export the model to ONNX
|
25 |
+
input_names = ["pixel_values"]
|
26 |
+
output_names = ["output"]
|
27 |
+
torch.onnx.export(
|
28 |
+
model,
|
29 |
+
inputs["pixel_values"],
|
30 |
+
ONNX_MODEL_PATH,
|
31 |
+
input_names=input_names,
|
32 |
+
output_names=output_names,
|
33 |
+
dynamic_axes={"pixel_values": {0: "batch_size"}, "output": {0: "batch_size"}},
|
34 |
+
opset_version=11
|
35 |
+
)
|
36 |
+
|
37 |
+
# Load the ONNX model
|
38 |
+
ort_session = ort.InferenceSession(ONNX_MODEL_PATH)
|
39 |
+
|
40 |
+
# Prepare the inputs for ONNX model
|
41 |
+
ort_inputs = {"pixel_values": inputs["pixel_values"].numpy()}
|
42 |
+
|
43 |
+
# Run the ONNX model
|
44 |
+
ort_outs = ort_session.run(None, ort_inputs)
|
45 |
+
|
46 |
+
# Display the output
|
47 |
+
print(ort_outs)
|