amank
Made change to cleaning code, modified number of warmpu step, getting eval samples from validation split
7839b8e
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a | |
text file or a dataset. | |
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | |
https://huggingface.co/models?filter=masked-lm | |
""" | |
import logging | |
import os | |
import sys | |
import time | |
from collections import defaultdict | |
from dataclasses import dataclass, field | |
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. | |
from pathlib import Path | |
from typing import Dict, List, Optional, Tuple | |
from utils import keep_devnagri_hf_doc | |
import datasets | |
import numpy as np | |
from datasets import load_dataset | |
from tqdm import tqdm | |
import flax | |
import jax | |
import jax.numpy as jnp | |
import optax | |
from flax import jax_utils, traverse_util | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard | |
from transformers import ( | |
CONFIG_MAPPING, | |
FLAX_MODEL_FOR_MASKED_LM_MAPPING, | |
AutoConfig, | |
AutoTokenizer, | |
FlaxAutoModelForMaskedLM, | |
HfArgumentParser, | |
PreTrainedTokenizerBase, | |
TensorType, | |
TrainingArguments, | |
is_tensorboard_available, | |
set_seed, | |
) | |
# if datasets.__version__ <= "1.8.0": | |
# raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming") | |
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "The model checkpoint for weights initialization." | |
"Don't set if you want to train a model from scratch." | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
train_ref_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, | |
) | |
validation_ref_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
validation_split_percentage: Optional[int] = field( | |
default=5, | |
metadata={ | |
"help": "The percentage of the train set used as validation set in case there's no validation split" | |
}, | |
) | |
max_seq_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated. Default to the max input length of the model." | |
}, | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
mlm_probability: float = field( | |
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": "Whether to pad all samples to `max_seq_length`. " | |
"If False, will pad the samples dynamically when batching to the maximum length in the batch." | |
}, | |
) | |
line_by_line: bool = field( | |
default=False, | |
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, | |
) | |
text_column_name: str = field( | |
default="text", metadata={"help": "The name of the column to retrieve the training text."} | |
) | |
shuffle_buffer_size: int = field( | |
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."} | |
) | |
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."}) | |
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"}) | |
def __post_init__(self): | |
if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." | |
class FlaxDataCollatorForLanguageModeling: | |
""" | |
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they | |
are not all of the same length. | |
Args: | |
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): | |
The tokenizer used for encoding the data. | |
mlm_probability (:obj:`float`, `optional`, defaults to 0.15): | |
The probability with which to (randomly) mask tokens in the input. | |
.. note:: | |
For best performance, this data collator should be used with a dataset having items that are dictionaries or | |
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a | |
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the | |
argument :obj:`return_special_tokens_mask=True`. | |
""" | |
tokenizer: PreTrainedTokenizerBase | |
mlm_probability: float = 0.15 | |
def __post_init__(self): | |
if self.tokenizer.mask_token is None: | |
raise ValueError( | |
"This tokenizer does not have a mask token which is necessary for masked language modeling. " | |
"You should pass `mlm=False` to train on causal language modeling instead." | |
) | |
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]: | |
# Handle dict or lists with proper padding and conversion to tensor. | |
batch = self.tokenizer.pad(examples, return_tensors=TensorType.NUMPY) | |
# If special token mask has been preprocessed, pop it from the dict. | |
special_tokens_mask = batch.pop("special_tokens_mask", None) | |
batch["input_ids"], batch["labels"] = self.mask_tokens( | |
batch["input_ids"], special_tokens_mask=special_tokens_mask | |
) | |
return batch | |
def mask_tokens( | |
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray] | |
) -> Tuple[jnp.ndarray, jnp.ndarray]: | |
""" | |
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. | |
""" | |
labels = inputs.copy() | |
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) | |
probability_matrix = np.full(labels.shape, self.mlm_probability) | |
special_tokens_mask = special_tokens_mask.astype("bool") | |
probability_matrix[special_tokens_mask] = 0.0 | |
masked_indices = np.random.binomial(1, probability_matrix).astype("bool") | |
labels[~masked_indices] = -100 # We only compute loss on masked tokens | |
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) | |
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices | |
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) | |
# 10% of the time, we replace masked input tokens with random word | |
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool") | |
indices_random &= masked_indices & ~indices_replaced | |
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4") | |
inputs[indices_random] = random_words[indices_random] | |
# The rest of the time (10% of the time) we keep the masked input tokens unchanged | |
return inputs, labels | |
def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray: | |
num_samples = len(samples_idx) | |
samples_to_remove = num_samples % batch_size | |
if samples_to_remove != 0: | |
samples_idx = samples_idx[:-samples_to_remove] | |
sections_split = num_samples // batch_size | |
batch_idx = np.split(samples_idx, sections_split) | |
return batch_idx | |
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length): | |
""" | |
The training iterator is advanced so that after groupifying the samples, | |
`num_samples` of length `max_seq_length` are returned. | |
""" | |
num_total_tokens = max_seq_length * num_samples | |
samples = defaultdict(list) | |
i = 0 | |
doc_count = 0 | |
while i < num_total_tokens: | |
tokenized_samples = next(train_iterator) | |
i += len(tokenized_samples["input_ids"]) | |
doc_count += 1 | |
# concatenate tokenized samples to list | |
samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()} | |
# Concatenated tokens are split to lists of length `max_seq_length`. | |
# Note that remainedr of % max_seq_length are thrown away. | |
def group_texts(examples): | |
result = { | |
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)] | |
for k, t in examples.items() | |
} | |
return result | |
grouped_samples = group_texts(samples) | |
return doc_count, grouped_samples | |
def write_train_metric(summary_writer, train_metrics, train_time, step): | |
summary_writer.scalar("train_time", train_time, step) | |
train_metrics = get_metrics(train_metrics) | |
for key, vals in train_metrics.items(): | |
tag = f"train_{key}" | |
for i, val in enumerate(vals): | |
summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
def write_eval_metric(summary_writer, eval_metrics, step): | |
for metric_name, value in eval_metrics.items(): | |
summary_writer.scalar(f"eval_{metric_name}", value, step) | |
if __name__ == "__main__": | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
"Use --overwrite_output_dir to overcome." | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
level="INFO", | |
datefmt="[%X]", | |
) | |
# Log on each process the small summary: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
streaming=True, | |
split="train", | |
) | |
validation_dataset = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
streaming=True, | |
split="validation", | |
) | |
if model_args.config_name: | |
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
if model_args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
elif model_args.model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
else: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
"You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
) | |
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. | |
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more | |
# efficient when it receives the `special_tokens_mask`. | |
def tokenize_function(examples): | |
return tokenizer(examples[data_args.text_column_name], return_special_tokens_mask=True) | |
shuffle_seed = training_args.seed | |
shuffled_dataset = dataset.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed) | |
cleaned_dataset = shuffled_dataset.map( | |
keep_devnagri_hf_doc, | |
batched=True | |
) | |
tokenized_datasets = cleaned_dataset.map( | |
tokenize_function, | |
batched=True | |
) | |
cleaned_validation_dataset = dataset.map( | |
keep_devnagri_hf_doc, | |
batched=True | |
) | |
tokenized_validation_datasets = cleaned_validation_dataset.map( | |
tokenize_function, | |
batched=True | |
) | |
has_tensorboard = is_tensorboard_available() | |
if has_tensorboard and jax.process_index() == 0: | |
try: | |
from flax.metrics.tensorboard import SummaryWriter | |
except ImportError as ie: | |
has_tensorboard = False | |
logger.warning( | |
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
) | |
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | |
# code for manual tpu profiling | |
import jax.profiler | |
server = jax.profiler.start_server(9999) | |
# Data collator | |
# This one will take care of randomly masking the tokens. | |
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) | |
# Initialize our training | |
rng = jax.random.PRNGKey(training_args.seed) | |
dropout_rngs = jax.random.split(rng, jax.local_device_count()) | |
if model_args.model_name_or_path: | |
model = FlaxAutoModelForMaskedLM.from_pretrained( | |
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | |
) | |
else: | |
model = FlaxAutoModelForMaskedLM.from_config( | |
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | |
) | |
if jax.device_count() < 8: | |
print('Number of device as per jax device count is {}. Press Enter to continue'.format(jax.device_count())) | |
input() | |
# Store some constant | |
num_epochs = int(training_args.num_train_epochs) | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() | |
# define number steps per stream epoch | |
dataset_doc_count = 18507273 | |
num_train_steps = ((dataset_doc_count//train_batch_size) + 1) * num_epochs * 2 | |
# Create learning rate schedule | |
warmup_fn = optax.linear_schedule( | |
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps | |
) | |
decay_fn = optax.linear_schedule( | |
init_value=training_args.learning_rate, | |
end_value=0, | |
transition_steps=num_train_steps - training_args.warmup_steps, | |
) | |
linear_decay_lr_schedule_fn = optax.join_schedules( | |
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] | |
) | |
# We use Optax's "masking" functionality to not apply weight decay | |
# to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
# mask boolean with the same structure as the parameters. | |
# The mask is True for parameters that should be decayed. | |
# Note that this mask is specifically adapted for FlaxBERT-like models. | |
# For other models, one should correct the layer norm parameter naming | |
# accordingly. | |
def decay_mask_fn(params): | |
flat_params = traverse_util.flatten_dict(params) | |
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} | |
return traverse_util.unflatten_dict(flat_mask) | |
# create adam optimizer | |
adamw = optax.adamw( | |
learning_rate=linear_decay_lr_schedule_fn, | |
b1=training_args.adam_beta1, | |
b2=training_args.adam_beta2, | |
eps=training_args.adam_epsilon, | |
weight_decay=training_args.weight_decay, | |
mask=decay_mask_fn, | |
) | |
# Setup train state | |
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw) | |
# Define gradient update step fn | |
def train_step(state, batch, dropout_rng): | |
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) | |
def loss_fn(params): | |
labels = batch.pop("labels") | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
# compute loss, ignore padded input tokens | |
label_mask = jnp.where(labels > 0, 1.0, 0.0) | |
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | |
# take average | |
loss = loss.sum() / label_mask.sum() | |
return loss | |
grad_fn = jax.value_and_grad(loss_fn) | |
loss, grad = grad_fn(state.params) | |
grad = jax.lax.pmean(grad, "batch") | |
new_state = state.apply_gradients(grads=grad) | |
metrics = jax.lax.pmean( | |
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch" | |
) | |
return new_state, metrics, new_dropout_rng | |
# Create parallel version of the train step | |
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
# Define eval fn | |
def eval_step(params, batch): | |
labels = batch.pop("labels") | |
logits = model(**batch, params=params, train=False)[0] | |
# compute loss, ignore padded input tokens | |
label_mask = jnp.where(labels > 0, 1.0, 0.0) | |
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | |
# compute accuracy | |
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask | |
# summarize metrics | |
metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()} | |
metrics = jax.lax.psum(metrics, axis_name="batch") | |
return metrics | |
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) | |
# Replicate the train state on each device | |
state = jax_utils.replicate(state) | |
train_time = 0 | |
train_start = time.time() | |
train_metrics = [] | |
eval_metrics = [] | |
training_iter = iter(tokenized_datasets) | |
validation_iter = iter(tokenized_validation_datasets) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
_, eval_samples = advance_iter_and_group_samples(validation_iter, data_args.num_eval_samples, max_seq_length) | |
steps = tqdm(range(num_train_steps), desc="Training...", position=0) | |
docs_progress_bar = tqdm(range(dataset_doc_count * num_epochs), desc="Docs Processed...", position=0) | |
for step in range(num_train_steps): | |
# ======================== Training ================================ | |
try: | |
doc_count, samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length) | |
except StopIteration: | |
# Once the end of the dataset stream is reached, the training iterator | |
# is reinitialized and reshuffled and a new eval dataset is randomely chosen. | |
shuffle_seed += 1 | |
tokenized_datasets.set_epoch(shuffle_seed) | |
training_iter = iter(tokenized_datasets) | |
_, eval_samples = advance_iter_and_group_samples(validation_iter, data_args.num_eval_samples, max_seq_length) | |
doc_count, samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length) | |
# process input samples | |
model_inputs = data_collator(samples) | |
# Model forward | |
model_inputs = shard(model_inputs.data) | |
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) | |
train_metrics.append(train_metric) | |
if step % training_args.logging_steps == 0 and step > 0: | |
steps.write( | |
f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})" | |
) | |
train_time += time.time() - train_start | |
if has_tensorboard and jax.process_index() == 0: | |
write_train_metric(summary_writer, train_metrics, train_time, step) | |
train_metrics = [] | |
# ======================== Evaluating ============================== | |
if step % training_args.eval_steps == 0 and step > 0: | |
eval_samples_idx = jnp.arange(data_args.num_eval_samples) | |
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) | |
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)): | |
# process input samples | |
batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()} | |
model_inputs = data_collator(batch_eval_samples) | |
# Model forward | |
model_inputs = shard(model_inputs.data) | |
metrics = p_eval_step(state.params, model_inputs) | |
eval_metrics.append(metrics) | |
# normalize eval metrics | |
eval_metrics = get_metrics(eval_metrics) | |
eval_metrics = jax.tree_map(jnp.sum, eval_metrics) | |
eval_normalizer = eval_metrics.pop("normalizer") | |
eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics) | |
# Update progress bar | |
steps.desc = f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" | |
if has_tensorboard and jax.process_index() == 0: | |
write_eval_metric(summary_writer, eval_metrics, step) | |
eval_metrics = [] | |
# save checkpoint after each epoch and push checkpoint to the hub | |
if jax.process_index() == 0: | |
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) | |
model.save_pretrained( | |
training_args.output_dir, | |
params=params, | |
push_to_hub=training_args.push_to_hub, | |
commit_message=f"Saving weights and logs of step {step+1}", | |
) | |
# update tqdm bar | |
docs_progress_bar.update(doc_count) | |
steps.update(1) |