panini / train_tokenizer.py
Aman K
All set to train
6a876f9
raw
history blame
639 Bytes
#!/usr/bin/env python3
from datasets import load_dataset
from tokenizers import ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_hi", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./tokenizer.json")