amahdaouy commited on
Commit
0a5d763
1 Parent(s): 5fbda05

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/stsb-xlm-r-multilingual
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:19755
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: Authorization to Hold a Cultural Event
25
+ sentences:
26
+ - Renewable Energy Accreditation Certificate
27
+ - شهادة إدارة الموارد المائية
28
+ - شهادة السلامة الصناعية
29
+ - source_sentence: Phosphate Fertilizer Import License
30
+ sentences:
31
+ - Licence d'exploitation d'une usine de production de matériaux avancés pour la
32
+ construction
33
+ - Certificat de propriété conjointe
34
+ - ' "Guarantee Form Filled and Signed"'
35
+ - source_sentence: ' "Application for the Adaptation and Classification of Construction
36
+ and Public Works Laboratories."'
37
+ sentences:
38
+ - ' "Demande d''adaptation et de classification des laboratoires de construction
39
+ et de travaux publics"'
40
+ - رخصة بناء مصنع للصناعات الخفيفة
41
+ - Certificat de non-bénéfice de programmes d'aide sociale
42
+ - source_sentence: Certificat d'importation d'équipements médicaux
43
+ sentences:
44
+ - دبلوم التكوين في علوم البحار
45
+ - رخصة استغلال محطة كهربائية
46
+ - Nuclear Equipment Factory Creation License
47
+ - source_sentence: Virtual Reality Innovation Center Exploitation License
48
+ sentences:
49
+ - ' "نسخة من بطاقة التعريف الوطنية أو جواز السفر."'
50
+ - رخصة استغلال مركز ابتكار تقنيات الواقع الافتراضي
51
+ - Medical Equipment Import Certificate
52
+ model-index:
53
+ - name: SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: eval
60
+ type: eval
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.9937461553619508
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.8656711043975902
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.9862199187169717
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.8646030016681072
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.9863097776981202
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.8646004452560553
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.9687884311170258
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.8657032187055717
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.9937461553619508
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.8657032187055717
91
+ name: Spearman Max
92
+ ---
93
+
94
+ # SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ - **Base model:** [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual) <!-- at revision e33c331c9f771a2d5ee0b434a970d22281e3fc3e -->
103
+ - **Maximum Sequence Length:** 128 tokens
104
+ - **Output Dimensionality:** 768 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ <!-- - **Training Dataset:** Unknown -->
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
121
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ )
123
+ ```
124
+
125
+ ## Usage
126
+
127
+ ### Direct Usage (Sentence Transformers)
128
+
129
+ First install the Sentence Transformers library:
130
+
131
+ ```bash
132
+ pip install -U sentence-transformers
133
+ ```
134
+
135
+ Then you can load this model and run inference.
136
+ ```python
137
+ from sentence_transformers import SentenceTransformer
138
+
139
+ # Download from the 🤗 Hub
140
+ model = SentenceTransformer("amahdaouy/xlmrsim-mar_cos")
141
+ # Run inference
142
+ sentences = [
143
+ 'Virtual Reality Innovation Center Exploitation License',
144
+ 'رخصة استغلال مركز ابتكار تقنيات الواقع الافتراضي',
145
+ ' "نسخة من بطاقة التعريف الوطنية أو جواز السفر."',
146
+ ]
147
+ embeddings = model.encode(sentences)
148
+ print(embeddings.shape)
149
+ # [3, 768]
150
+
151
+ # Get the similarity scores for the embeddings
152
+ similarities = model.similarity(embeddings, embeddings)
153
+ print(similarities.shape)
154
+ # [3, 3]
155
+ ```
156
+
157
+ <!--
158
+ ### Direct Usage (Transformers)
159
+
160
+ <details><summary>Click to see the direct usage in Transformers</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Downstream Usage (Sentence Transformers)
167
+
168
+ You can finetune this model on your own dataset.
169
+
170
+ <details><summary>Click to expand</summary>
171
+
172
+ </details>
173
+ -->
174
+
175
+ <!--
176
+ ### Out-of-Scope Use
177
+
178
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
179
+ -->
180
+
181
+ ## Evaluation
182
+
183
+ ### Metrics
184
+
185
+ #### Semantic Similarity
186
+ * Dataset: `eval`
187
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
188
+
189
+ | Metric | Value |
190
+ |:-------------------|:-----------|
191
+ | pearson_cosine | 0.9937 |
192
+ | spearman_cosine | 0.8657 |
193
+ | pearson_manhattan | 0.9862 |
194
+ | spearman_manhattan | 0.8646 |
195
+ | pearson_euclidean | 0.9863 |
196
+ | spearman_euclidean | 0.8646 |
197
+ | pearson_dot | 0.9688 |
198
+ | spearman_dot | 0.8657 |
199
+ | pearson_max | 0.9937 |
200
+ | **spearman_max** | **0.8657** |
201
+
202
+ <!--
203
+ ## Bias, Risks and Limitations
204
+
205
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
206
+ -->
207
+
208
+ <!--
209
+ ### Recommendations
210
+
211
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
212
+ -->
213
+
214
+ ## Training Details
215
+
216
+ ### Training Dataset
217
+
218
+ #### Unnamed Dataset
219
+
220
+
221
+ * Size: 19,755 training samples
222
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | sentence_0 | sentence_1 | label |
225
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
226
+ | type | string | string | float |
227
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.66 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.34 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
228
+ * Samples:
229
+ | sentence_0 | sentence_1 | label |
230
+ |:-------------------------------------------------------|:-----------------------------------------------------------------|:-----------------|
231
+ | <code>Seasonal Commercial Activity License</code> | <code>Certificat de participation aux activités sportives</code> | <code>0.0</code> |
232
+ | <code>Authorization to Hold a Cultural Event</code> | <code>شهادة إدارة الموارد المائية</code> | <code>0.0</code> |
233
+ | <code>Permis d'exploitation des ports maritimes</code> | <code>Seaport Exploitation Permit</code> | <code>1.0</code> |
234
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
235
+ ```json
236
+ {
237
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
238
+ }
239
+ ```
240
+
241
+ ### Training Hyperparameters
242
+ #### Non-Default Hyperparameters
243
+
244
+ - `eval_strategy`: steps
245
+ - `per_device_train_batch_size`: 32
246
+ - `per_device_eval_batch_size`: 32
247
+ - `num_train_epochs`: 2
248
+ - `multi_dataset_batch_sampler`: round_robin
249
+
250
+ #### All Hyperparameters
251
+ <details><summary>Click to expand</summary>
252
+
253
+ - `overwrite_output_dir`: False
254
+ - `do_predict`: False
255
+ - `eval_strategy`: steps
256
+ - `prediction_loss_only`: True
257
+ - `per_device_train_batch_size`: 32
258
+ - `per_device_eval_batch_size`: 32
259
+ - `per_gpu_train_batch_size`: None
260
+ - `per_gpu_eval_batch_size`: None
261
+ - `gradient_accumulation_steps`: 1
262
+ - `eval_accumulation_steps`: None
263
+ - `torch_empty_cache_steps`: None
264
+ - `learning_rate`: 5e-05
265
+ - `weight_decay`: 0.0
266
+ - `adam_beta1`: 0.9
267
+ - `adam_beta2`: 0.999
268
+ - `adam_epsilon`: 1e-08
269
+ - `max_grad_norm`: 1
270
+ - `num_train_epochs`: 2
271
+ - `max_steps`: -1
272
+ - `lr_scheduler_type`: linear
273
+ - `lr_scheduler_kwargs`: {}
274
+ - `warmup_ratio`: 0.0
275
+ - `warmup_steps`: 0
276
+ - `log_level`: passive
277
+ - `log_level_replica`: warning
278
+ - `log_on_each_node`: True
279
+ - `logging_nan_inf_filter`: True
280
+ - `save_safetensors`: True
281
+ - `save_on_each_node`: False
282
+ - `save_only_model`: False
283
+ - `restore_callback_states_from_checkpoint`: False
284
+ - `no_cuda`: False
285
+ - `use_cpu`: False
286
+ - `use_mps_device`: False
287
+ - `seed`: 42
288
+ - `data_seed`: None
289
+ - `jit_mode_eval`: False
290
+ - `use_ipex`: False
291
+ - `bf16`: False
292
+ - `fp16`: False
293
+ - `fp16_opt_level`: O1
294
+ - `half_precision_backend`: auto
295
+ - `bf16_full_eval`: False
296
+ - `fp16_full_eval`: False
297
+ - `tf32`: None
298
+ - `local_rank`: 0
299
+ - `ddp_backend`: None
300
+ - `tpu_num_cores`: None
301
+ - `tpu_metrics_debug`: False
302
+ - `debug`: []
303
+ - `dataloader_drop_last`: False
304
+ - `dataloader_num_workers`: 0
305
+ - `dataloader_prefetch_factor`: None
306
+ - `past_index`: -1
307
+ - `disable_tqdm`: False
308
+ - `remove_unused_columns`: True
309
+ - `label_names`: None
310
+ - `load_best_model_at_end`: False
311
+ - `ignore_data_skip`: False
312
+ - `fsdp`: []
313
+ - `fsdp_min_num_params`: 0
314
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
315
+ - `fsdp_transformer_layer_cls_to_wrap`: None
316
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
317
+ - `deepspeed`: None
318
+ - `label_smoothing_factor`: 0.0
319
+ - `optim`: adamw_torch
320
+ - `optim_args`: None
321
+ - `adafactor`: False
322
+ - `group_by_length`: False
323
+ - `length_column_name`: length
324
+ - `ddp_find_unused_parameters`: None
325
+ - `ddp_bucket_cap_mb`: None
326
+ - `ddp_broadcast_buffers`: False
327
+ - `dataloader_pin_memory`: True
328
+ - `dataloader_persistent_workers`: False
329
+ - `skip_memory_metrics`: True
330
+ - `use_legacy_prediction_loop`: False
331
+ - `push_to_hub`: False
332
+ - `resume_from_checkpoint`: None
333
+ - `hub_model_id`: None
334
+ - `hub_strategy`: every_save
335
+ - `hub_private_repo`: False
336
+ - `hub_always_push`: False
337
+ - `gradient_checkpointing`: False
338
+ - `gradient_checkpointing_kwargs`: None
339
+ - `include_inputs_for_metrics`: False
340
+ - `eval_do_concat_batches`: True
341
+ - `fp16_backend`: auto
342
+ - `push_to_hub_model_id`: None
343
+ - `push_to_hub_organization`: None
344
+ - `mp_parameters`:
345
+ - `auto_find_batch_size`: False
346
+ - `full_determinism`: False
347
+ - `torchdynamo`: None
348
+ - `ray_scope`: last
349
+ - `ddp_timeout`: 1800
350
+ - `torch_compile`: False
351
+ - `torch_compile_backend`: None
352
+ - `torch_compile_mode`: None
353
+ - `dispatch_batches`: None
354
+ - `split_batches`: None
355
+ - `include_tokens_per_second`: False
356
+ - `include_num_input_tokens_seen`: False
357
+ - `neftune_noise_alpha`: None
358
+ - `optim_target_modules`: None
359
+ - `batch_eval_metrics`: False
360
+ - `eval_on_start`: False
361
+ - `eval_use_gather_object`: False
362
+ - `batch_sampler`: batch_sampler
363
+ - `multi_dataset_batch_sampler`: round_robin
364
+
365
+ </details>
366
+
367
+ ### Training Logs
368
+ | Epoch | Step | Training Loss | eval_spearman_max |
369
+ |:------:|:----:|:-------------:|:-----------------:|
370
+ | 0.1618 | 100 | - | 0.8617 |
371
+ | 0.3236 | 200 | - | 0.8639 |
372
+ | 0.4854 | 300 | - | 0.8639 |
373
+ | 0.6472 | 400 | - | 0.8644 |
374
+ | 0.8091 | 500 | 0.0228 | 0.8652 |
375
+ | 0.9709 | 600 | - | 0.8652 |
376
+ | 1.0 | 618 | - | 0.8652 |
377
+ | 1.1327 | 700 | - | 0.8650 |
378
+ | 1.2945 | 800 | - | 0.8653 |
379
+ | 1.4563 | 900 | - | 0.8651 |
380
+ | 1.6181 | 1000 | 0.0055 | 0.8651 |
381
+ | 1.7799 | 1100 | - | 0.8657 |
382
+ | 1.9417 | 1200 | - | 0.8657 |
383
+ | 2.0 | 1236 | - | 0.8657 |
384
+
385
+
386
+ ### Framework Versions
387
+ - Python: 3.10.12
388
+ - Sentence Transformers: 3.1.0
389
+ - Transformers: 4.44.2
390
+ - PyTorch: 2.4.0+cu121
391
+ - Accelerate: 0.34.2
392
+ - Datasets: 3.0.0
393
+ - Tokenizers: 0.19.1
394
+
395
+ ## Citation
396
+
397
+ ### BibTeX
398
+
399
+ #### Sentence Transformers
400
+ ```bibtex
401
+ @inproceedings{reimers-2019-sentence-bert,
402
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
403
+ author = "Reimers, Nils and Gurevych, Iryna",
404
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
405
+ month = "11",
406
+ year = "2019",
407
+ publisher = "Association for Computational Linguistics",
408
+ url = "https://arxiv.org/abs/1908.10084",
409
+ }
410
+ ```
411
+
412
+ <!--
413
+ ## Glossary
414
+
415
+ *Clearly define terms in order to be accessible across audiences.*
416
+ -->
417
+
418
+ <!--
419
+ ## Model Card Authors
420
+
421
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
422
+ -->
423
+
424
+ <!--
425
+ ## Model Card Contact
426
+
427
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
428
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/stsb-xlm-r-multilingual",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c395101fdcca1ff7231617ccc59e794c835d9a8694530467e888761b98e40bcc
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2ccb33b55c4d157419a2105d6e033f7514c2baa6306471c56b86ab02787613
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 128,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }