Alvaro Bartolome commited on
Commit
f998a91
·
1 Parent(s): ef04124

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9267369114257491
28
  - name: Recall
29
  type: recall
30
- value: 0.9473241332884551
31
  - name: F1
32
  type: f1
33
- value: 0.9369174434087884
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9852239948195679
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.1060
47
- - Precision: 0.9267
48
- - Recall: 0.9473
49
- - F1: 0.9369
50
- - Accuracy: 0.9852
51
 
52
  ## Model description
53
 
@@ -79,16 +79,16 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.1012 | 1.0 | 1756 | 0.0895 | 0.8924 | 0.9194 | 0.9057 | 0.9767 |
83
- | 0.0491 | 2.0 | 3512 | 0.0818 | 0.9070 | 0.9260 | 0.9164 | 0.9801 |
84
- | 0.0334 | 3.0 | 5268 | 0.0818 | 0.9170 | 0.9315 | 0.9242 | 0.9821 |
85
- | 0.0235 | 4.0 | 7024 | 0.0893 | 0.9074 | 0.9364 | 0.9216 | 0.9815 |
86
- | 0.0167 | 5.0 | 8780 | 0.0879 | 0.9106 | 0.9414 | 0.9258 | 0.9828 |
87
- | 0.0071 | 6.0 | 10536 | 0.0955 | 0.9172 | 0.9435 | 0.9301 | 0.9836 |
88
- | 0.0039 | 7.0 | 12292 | 0.1016 | 0.9209 | 0.9423 | 0.9315 | 0.9835 |
89
- | 0.0021 | 8.0 | 14048 | 0.1043 | 0.9294 | 0.9463 | 0.9378 | 0.9847 |
90
- | 0.0014 | 9.0 | 15804 | 0.1064 | 0.9271 | 0.9475 | 0.9372 | 0.9853 |
91
- | 0.0005 | 10.0 | 17560 | 0.1060 | 0.9267 | 0.9473 | 0.9369 | 0.9852 |
92
 
93
 
94
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.932077342588002
28
  - name: Recall
29
  type: recall
30
+ value: 0.9491753618310333
31
  - name: F1
32
  type: f1
33
+ value: 0.940548653381139
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.984782480720551
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.1088
47
+ - Precision: 0.9321
48
+ - Recall: 0.9492
49
+ - F1: 0.9405
50
+ - Accuracy: 0.9848
51
 
52
  ## Model description
53
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1015 | 1.0 | 1756 | 0.1001 | 0.8858 | 0.9167 | 0.9010 | 0.9740 |
83
+ | 0.049 | 2.0 | 3512 | 0.0803 | 0.8993 | 0.9273 | 0.9131 | 0.9798 |
84
+ | 0.0327 | 3.0 | 5268 | 0.0794 | 0.9199 | 0.9350 | 0.9274 | 0.9821 |
85
+ | 0.0237 | 4.0 | 7024 | 0.0880 | 0.9050 | 0.9344 | 0.9194 | 0.9813 |
86
+ | 0.0131 | 5.0 | 8780 | 0.0849 | 0.9178 | 0.9446 | 0.9310 | 0.9837 |
87
+ | 0.0073 | 6.0 | 10536 | 0.0975 | 0.9166 | 0.9446 | 0.9304 | 0.9838 |
88
+ | 0.0044 | 7.0 | 12292 | 0.0965 | 0.9267 | 0.9475 | 0.9370 | 0.9842 |
89
+ | 0.0015 | 8.0 | 14048 | 0.1075 | 0.9273 | 0.9463 | 0.9367 | 0.9843 |
90
+ | 0.0011 | 9.0 | 15804 | 0.1089 | 0.9317 | 0.9480 | 0.9398 | 0.9847 |
91
+ | 0.0006 | 10.0 | 17560 | 0.1088 | 0.9321 | 0.9492 | 0.9405 | 0.9848 |
92
 
93
 
94
  ### Framework versions