Alvaro Bartolome
commited on
Commit
·
f998a91
1
Parent(s):
ef04124
update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -79,16 +79,16 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.932077342588002
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.9491753618310333
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.940548653381139
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.984782480720551
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.1088
|
47 |
+
- Precision: 0.9321
|
48 |
+
- Recall: 0.9492
|
49 |
+
- F1: 0.9405
|
50 |
+
- Accuracy: 0.9848
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.1015 | 1.0 | 1756 | 0.1001 | 0.8858 | 0.9167 | 0.9010 | 0.9740 |
|
83 |
+
| 0.049 | 2.0 | 3512 | 0.0803 | 0.8993 | 0.9273 | 0.9131 | 0.9798 |
|
84 |
+
| 0.0327 | 3.0 | 5268 | 0.0794 | 0.9199 | 0.9350 | 0.9274 | 0.9821 |
|
85 |
+
| 0.0237 | 4.0 | 7024 | 0.0880 | 0.9050 | 0.9344 | 0.9194 | 0.9813 |
|
86 |
+
| 0.0131 | 5.0 | 8780 | 0.0849 | 0.9178 | 0.9446 | 0.9310 | 0.9837 |
|
87 |
+
| 0.0073 | 6.0 | 10536 | 0.0975 | 0.9166 | 0.9446 | 0.9304 | 0.9838 |
|
88 |
+
| 0.0044 | 7.0 | 12292 | 0.0965 | 0.9267 | 0.9475 | 0.9370 | 0.9842 |
|
89 |
+
| 0.0015 | 8.0 | 14048 | 0.1075 | 0.9273 | 0.9463 | 0.9367 | 0.9843 |
|
90 |
+
| 0.0011 | 9.0 | 15804 | 0.1089 | 0.9317 | 0.9480 | 0.9398 | 0.9847 |
|
91 |
+
| 0.0006 | 10.0 | 17560 | 0.1088 | 0.9321 | 0.9492 | 0.9405 | 0.9848 |
|
92 |
|
93 |
|
94 |
### Framework versions
|