Alvaro Bartolome commited on
Commit
9eea6c7
1 Parent(s): 99b0755

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9306692773228907
28
  - name: Recall
29
  type: recall
30
- value: 0.9381841019199713
31
  - name: F1
32
  type: f1
33
- value: 0.9344115807345187
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9832666156472597
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.1183
47
- - Precision: 0.9307
48
- - Recall: 0.9382
49
- - F1: 0.9344
50
- - Accuracy: 0.9833
51
 
52
  ## Model description
53
 
@@ -79,16 +79,16 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.1081 | 1.0 | 1756 | 0.0963 | 0.8947 | 0.8982 | 0.8964 | 0.9742 |
83
- | 0.0518 | 2.0 | 3512 | 0.0780 | 0.9219 | 0.9182 | 0.9200 | 0.9803 |
84
- | 0.0348 | 3.0 | 5268 | 0.0833 | 0.9258 | 0.9271 | 0.9264 | 0.9819 |
85
- | 0.0268 | 4.0 | 7024 | 0.0900 | 0.9152 | 0.9241 | 0.9196 | 0.9805 |
86
- | 0.0167 | 5.0 | 8780 | 0.0929 | 0.9225 | 0.9320 | 0.9272 | 0.9822 |
87
- | 0.0071 | 6.0 | 10536 | 0.1119 | 0.9229 | 0.9270 | 0.9249 | 0.9816 |
88
- | 0.0056 | 7.0 | 12292 | 0.1073 | 0.9286 | 0.9366 | 0.9326 | 0.9832 |
89
- | 0.0021 | 8.0 | 14048 | 0.1194 | 0.9285 | 0.9350 | 0.9318 | 0.9829 |
90
- | 0.0019 | 9.0 | 15804 | 0.1156 | 0.9318 | 0.9376 | 0.9347 | 0.9833 |
91
- | 0.0011 | 10.0 | 17560 | 0.1183 | 0.9307 | 0.9382 | 0.9344 | 0.9833 |
92
 
93
 
94
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9267369114257491
28
  - name: Recall
29
  type: recall
30
+ value: 0.9473241332884551
31
  - name: F1
32
  type: f1
33
+ value: 0.9369174434087884
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9852239948195679
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.1060
47
+ - Precision: 0.9267
48
+ - Recall: 0.9473
49
+ - F1: 0.9369
50
+ - Accuracy: 0.9852
51
 
52
  ## Model description
53
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1012 | 1.0 | 1756 | 0.0895 | 0.8924 | 0.9194 | 0.9057 | 0.9767 |
83
+ | 0.0491 | 2.0 | 3512 | 0.0818 | 0.9070 | 0.9260 | 0.9164 | 0.9801 |
84
+ | 0.0334 | 3.0 | 5268 | 0.0818 | 0.9170 | 0.9315 | 0.9242 | 0.9821 |
85
+ | 0.0235 | 4.0 | 7024 | 0.0893 | 0.9074 | 0.9364 | 0.9216 | 0.9815 |
86
+ | 0.0167 | 5.0 | 8780 | 0.0879 | 0.9106 | 0.9414 | 0.9258 | 0.9828 |
87
+ | 0.0071 | 6.0 | 10536 | 0.0955 | 0.9172 | 0.9435 | 0.9301 | 0.9836 |
88
+ | 0.0039 | 7.0 | 12292 | 0.1016 | 0.9209 | 0.9423 | 0.9315 | 0.9835 |
89
+ | 0.0021 | 8.0 | 14048 | 0.1043 | 0.9294 | 0.9463 | 0.9378 | 0.9847 |
90
+ | 0.0014 | 9.0 | 15804 | 0.1064 | 0.9271 | 0.9475 | 0.9372 | 0.9853 |
91
+ | 0.0005 | 10.0 | 17560 | 0.1060 | 0.9267 | 0.9473 | 0.9369 | 0.9852 |
92
 
93
 
94
  ### Framework versions