alvanli commited on
Commit
59a882f
2 Parent(s): 7859c2d 072b644

Merge branch 'main' of hf.co:alvanlii/wav2vec2-BERT-cantonese

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ license: apache-2.0
5
+ datasets:
6
+ - mozilla-foundation/common_voice_16_0
7
+ model-index:
8
+ - name: Wav2Vec2-BERT - Alvin
9
+ results:
10
+ - task:
11
+ name: Automatic Speech Recognition
12
+ type: automatic-speech-recognition
13
+ dataset:
14
+ name: mozilla-foundation/common_voice_16_0 yue
15
+ type: mozilla-foundation/common_voice_16_0
16
+ config: yue
17
+ split: test
18
+ args: yue
19
+ metrics:
20
+ - name: Normalized CER
21
+ type: cer
22
+ value: Pending
23
+ ---
24
+
25
+
26
+ # Wav2Vec2-BERT - Alvin
27
+
28
+ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0).
29
+
30
+ ## Training and evaluation data
31
+ For training, three datasets were used:
32
+ - Common Voice 16 `zh-HK` and `yue` Train Set
33
+ - CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906.
34
+ - Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf
35
+
36
+
37
+ ## Training Hyperparameters
38
+ - learning_rate: 1e-4
39
+ - train_batch_size: 4 (on 1 3090)
40
+ - eval_batch_size: 1
41
+ - gradient_accumulation_steps: 32
42
+ - total_train_batch_size: 32x4=128
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_warmup_steps: 500
45
+ - num_train_epochs: 8
46
+
47
+ ## Training Results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Normalized CER |
50
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
51
+ |