{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1c07b63b50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1c07b63be0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1c07b63c70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1c07b63d00>", "_build": "<function ActorCriticPolicy._build at 0x7d1c07b63d90>", "forward": "<function ActorCriticPolicy.forward at 0x7d1c07b63e20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1c07b63eb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1c07b63f40>", "_predict": "<function ActorCriticPolicy._predict at 0x7d1c07b70040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1c07b700d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1c07b70160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1c07b701f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1c07cfe1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699120119231490592, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB+gT3D7WK6Fd2eOiEp+7imWoW7Ao+vuQAAgD8AAIA/AEZ/PHsKn7rwFJk6vvyQNexxqzpxTrC5AACAPwAAgD+atdA9pOErPNZsXj0TpXO+aznpPS7+Br0AAAAAAACAPzakhz7xEU4/jmARPg8G6L7qAMQ+xWdZvQAAAAAAAAAA5k9DvY/CULqr+vSyYbNqrjFKBTs+hbMzAACAPwAAgD+aIVi8RsK0P46o3b4jJQO8zWQfPPZ5wjwAAAAAAAAAADM81zzDHU66fYk2s9AAtC8xPKW7Oq7DMwAAgD8AAIA/zVbAvXI5Ez9OBng+B3icvtlcJj32qde8AAAAAAAAAABgKR6+vWMMPxDlwj3CrZe+Pn1dvcZHkD0AAAAAAAAAAPOIHL56YZo/h/EAv0Tm/77MSou+oowrvgAAAAAAAAAAZh4gPdBcrz/ar6E+LROZvrt+GD14l1k+AAAAAAAAAADNa948bOjpPgXgZ73bl6q+WrRNvVba4TwAAAAAAAAAAObCM70N3CU+/g+nPYtkS76//ME7wqigvQAAAAAAAAAAzcI2PRSa4ry2yVk8v7MEPWTEtb3mviC6AACAPwAAgD8AzxW+hzYyP13knj2V16W+ZqhYvUuGfD0AAAAAAAAAAE2pED2Mh0w+YUgDvrQ4gL5yzTq8cgGtvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAcnsXzlLiMAWyUTSABjAF0lEdAk72AV45cT3V9lChoBkdAcESEMspXqGgHTSoBaAhHQJO+O9TP0I11fZQoaAZHQG2k32EkB0ZoB00WAWgIR0CTvunOjZctdX2UKGgGR0BToDUExIrfaAdL7GgIR0CTv4ir1dxAdX2UKGgGR0Btr21KGtZFaAdNBwFoCEdAk7/4QvpQlHV9lChoBkdAbFqNT987ZGgHTRMBaAhHQJPAi6OHWSV1fZQoaAZHQHOTi57PY4BoB00EAWgIR0CTwbtJFspHdX2UKGgGR0Bwx9klNUOvaAdNSwFoCEdAk8JtZvDP4XV9lChoBkdAbsjlfZ26kWgHTSsBaAhHQJPC4DdP+GZ1fZQoaAZHQHBMJMHryDtoB00sAWgIR0CTwuekYXO4dX2UKGgGR0Bw6V02cawVaAdNCwFoCEdAk8MCm/FirnV9lChoBkdAcKvS9M9KVmgHTSkBaAhHQJPDE67ulXR1fZQoaAZHQHBo6gmJFb5oB00iAWgIR0CTxX9deIEbdX2UKGgGR0BybEY51eSkaAdNDgFoCEdAk8WMySFGonV9lChoBkdAcC6GTcIqsmgHTVABaAhHQJPGAhje9Bd1fZQoaAZHQHKt6OxSpBJoB0vqaAhHQJPGGUeMhox1fZQoaAZHQHBZoqCpWFNoB01KAWgIR0CTxrSApazNdX2UKGgGR0BwA9d1MdtEaAdNBgFoCEdAk8d+3UhFE3V9lChoBkdAbgLt4zJp4GgHTQEBaAhHQJPIVrKvFFV1fZQoaAZHQHDnVGgBcRloB00/AWgIR0CTybg2qDK6dX2UKGgGR0BwqwPDpC8faAdNhQFoCEdAk8oC5mRNh3V9lChoBkdAbgx3ta6jFmgHTRkBaAhHQJPKQMiKR+11fZQoaAZHQHMh5NwiqyZoB00JAWgIR0CTyme8wpOOdX2UKGgGR0BxpxQpF1B/aAdL/2gIR0CTyrT2nKnvdX2UKGgGR0BwrCgTRIBjaAdNEAFoCEdAk8r8ABDG+HV9lChoBkdAcwcqiGnGbWgHTTMBaAhHQJPMIeCCjDd1fZQoaAZHQHGki7TUiINoB00+AWgIR0CTzFb1h9b5dX2UKGgGR0Bw9z/IbOu8aAdL6GgIR0CTzZZeRgZ1dX2UKGgGR0Byfc9ovi97aAdNFgFoCEdAk821INEw4HV9lChoBkdActbaKDTScGgHTRsBaAhHQJPOWNo8IRh1fZQoaAZHQHD36bjLjghoB00uAWgIR0CTzng7o0Q9dX2UKGgGR0BzJTjrAxi5aAdNHQFoCEdAk85+uRs/IXV9lChoBkdAcYo9TxXnyWgHTQgBaAhHQJPP/2Dg62h1fZQoaAZHQHMBTc6/7BRoB00qAWgIR0CT0Cxeb/fgdX2UKGgGR0ByI6O3lS0jaAdL6mgIR0CT0QqbSZ0CdX2UKGgGR0BwSlIsiB5HaAdL9GgIR0CT0a+tbLU1dX2UKGgGR0BvPpjpcHGCaAdNFQFoCEdAk9H95le4TnV9lChoBkdAbdZFOwgTy2gHTREBaAhHQJPSHQla8pV1fZQoaAZHQHAbRE8aGYdoB00RAWgIR0CT0tifg75mdX2UKGgGR0Bx0Bgw482aaAdNaQFoCEdAk9QrhrFfiXV9lChoBkdAUP1FocrAg2gHS81oCEdAk9RD/p+tsHV9lChoBkdAbh9FJg9eQmgHTRUBaAhHQJPUYJ4SpR51fZQoaAZHQHJhoxk/bCdoB0vkaAhHQJPVDd9Dx9Z1fZQoaAZHQHCEnVLBbfRoB00JAWgIR0CT1ULWqcVhdX2UKGgGR0BtS3G6wt8NaAdNQAFoCEdAk9ViAlOXV3V9lChoBkdAbpQAyVObiWgHTSkBaAhHQJPtz2GqPwN1fZQoaAZHQHNR3cDbJwNoB00lAWgIR0CT7tUONHYpdX2UKGgGR0BxhkaVD8cdaAdNCAFoCEdAk/AQnH/953V9lChoBkdAYtMS0Sh8IGgHTegDaAhHQJPxJlkH2RJ1fZQoaAZHQG8CqsdT5whoB00wAWgIR0CT8ijO9nK5dX2UKGgGR0ByqBNahYeUaAdNHwFoCEdAk/K7DZUT+XV9lChoBkdAcIpvUz9CNWgHTQEBaAhHQJPy4T6BRQ91fZQoaAZHQHEkISpR4yJoB00EAWgIR0CT9CtTDO1OdX2UKGgGR0BwIpCqp97XaAdNJQFoCEdAk/RGNWEK3XV9lChoBkdAcyFtmthd+2gHS/JoCEdAk/VfYvnKXHV9lChoBkdAckow/xDst2gHS/hoCEdAk/V/8VHnU3V9lChoBkdAb7wXKr7wa2gHTU0BaAhHQJP1lRR/EwZ1fZQoaAZHQHFEMWKuSwJoB0v0aAhHQJP3AR/ViF11fZQoaAZHQHGwlJ17pmpoB00bAWgIR0CT+C+K0lZ6dX2UKGgGR0Btt51DBuXNaAdNVAFoCEdAk/lPA0sOG3V9lChoBkdAcjIGA08/2WgHTTcBaAhHQJP5Xttygf51fZQoaAZHQG2EAgxJul5oB00cAWgIR0CT+jjxTbWVdX2UKGgGR0BxWGd3B55aaAdNDgFoCEdAk/qTyBkI5nV9lChoBkdAci+RywOe8WgHS/loCEdAk/qnAuZkTnV9lChoBkdAcCDSAH3UQWgHTV8BaAhHQJP7epgkTpR1fZQoaAZHQGxDmW+oLohoB0v7aAhHQJP8tpj+aSd1fZQoaAZHQHCTqZH/cWVoB00cAWgIR0CT/NQ2uPmxdX2UKGgGR0BwBNrZamoBaAdNDwFoCEdAk/1ng1m8NHV9lChoBkdAcZrx82JizGgHTT4BaAhHQJP9vpfQa751fZQoaAZHQHD01UMoc71oB00JAWgIR0CT/hnPE87qdX2UKGgGR0BtiPfhuO0caAdNGwFoCEdAk/6JZjhDPXV9lChoBkdAco/rxRVIZ2gHTXIBaAhHQJP+2FnIyTJ1fZQoaAZHQHDeao60Y0loB00vAWgIR0CT/zi1AqusdX2UKGgGR0BwD4BT4tYkaAdNDwFoCEdAk/9ZvtMPBnV9lChoBkdAcJVSUkfLcWgHTRMBaAhHQJQAIkrwvxp1fZQoaAZHQHIoSIDYAbRoB0v3aAhHQJQBLLdN34d1fZQoaAZHQGzxFOXVsk9oB00qAWgIR0CUAbrWiDdydX2UKGgGR0BS1KMvRJEqaAdLuWgIR0CUAd6WPcSHdX2UKGgGR0BtOFKCg9NfaAdNQAFoCEdAlAJF9ORDC3V9lChoBkdAcS1SsKb8WWgHTS4BaAhHQJQDHMB6rvN1fZQoaAZHQHDtokqtozxoB01VAWgIR0CUBHCL/CIldX2UKGgGR0Bv8Ys5GSZCaAdNEwFoCEdAlAVR1klNUXV9lChoBkdAcf6SElE7XGgHS/5oCEdAlAXuUILPU3V9lChoBkdAbd275mAbymgHTSIBaAhHQJQGQYekpJB1fZQoaAZHQG0qfpMYdhloB01EAWgIR0CUBmMHryDqdX2UKGgGR0Bw+QZdfLLZaAdNHgFoCEdAlAaI0dilSHV9lChoBkdAcbCjD8+A3GgHTQoBaAhHQJQGuvwEyL11fZQoaAZHQG3gQl8gIQhoB00FAWgIR0CUBxos7MgVdX2UKGgGR0Btr7XDm8ujaAdNCAFoCEdAlAggrc0tRXV9lChoBkdAcLo7iQ1aXGgHTT0BaAhHQJQInK7qY7d1fZQoaAZHQHIl9o8IRiBoB03NAWgIR0CUCQwVj7Q+dX2UKGgGR0By8WFfzBhyaAdNGAFoCEdAlAmcJQcghnV9lChoBkdAcesxzaK1omgHTQoBaAhHQJQKSSntOVR1fZQoaAZHQG9xb+Lm6oVoB00oAWgIR0CUCpLsKLKndX2UKGgGR0BymFpJwsGxaAdNQgFoCEdAlAtmDcuannV9lChoBkdAcK7PDYRNAWgHTSABaAhHQJQLp54W1tx1fZQoaAZHQHAuEXP7el9oB00cAWgIR0CUDLZid8RddX2UKGgGR0BvB00cfeUIaAdL/2gIR0CUDXLNfPX1dX2UKGgGR0Bu/Nwgkka/aAdNAgFoCEdAlA3/D1oQF3V9lChoBkdAbKwA/cFhX2gHTSIBaAhHQJQOQnx8UmF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |