aloobun commited on
Commit
2611362
1 Parent(s): 83637ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md CHANGED
@@ -6,6 +6,45 @@ datasets:
6
  tags:
7
  - math
8
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ## Training procedure
10
 
11
 
 
6
  tags:
7
  - math
8
  ---
9
+
10
+ ### WIP
11
+
12
+ ## Usage:
13
+
14
+ ```
15
+ import torch
16
+ from peft import PeftModel
17
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
18
+
19
+ model_name = "microsoft/phi-1_5"
20
+ adapters_name = 'aloobun/phi_mini_math23k_v1'
21
+
22
+ model = AutoModelForCausalLM.from_pretrained(
23
+ model_name,
24
+ load_in_4bit=True,
25
+ torch_dtype=torch.bfloat16,
26
+ device_map="auto",
27
+ quantization_config=BitsAndBytesConfig(
28
+ load_in_4bit=True,
29
+ bnb_4bit_compute_dtype=torch.bfloat16,
30
+ bnb_4bit_use_double_quant=True,
31
+ bnb_4bit_quant_type='nf4'
32
+ ),
33
+ )
34
+ model = PeftModel.from_pretrained(model, adapters_name)
35
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
36
+ ```
37
+
38
+ ```
39
+ prompt = "What is the largest two-digit integer whose digits are distinct and form a geometric sequence?"
40
+ formatted_prompt = (
41
+ f"### Instruction: {prompt} ### Response:"
42
+ )
43
+ inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda:0")
44
+ outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=1048)
45
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
46
+ ```
47
+
48
  ## Training procedure
49
 
50