alon-albalak commited on
Commit
7fc22c0
1 Parent(s): 3922b4f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -1
README.md CHANGED
@@ -30,4 +30,54 @@ Evaluated on held-out test set from XQuAD
30
  "exact_match": 64.6067415730337,
31
  "f1": 79.52043478874286,
32
  "test_samples": 2384
33
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  "exact_match": 64.6067415730337,
31
  "f1": 79.52043478874286,
32
  "test_samples": 2384
33
+ ```
34
+
35
+ # Usage
36
+
37
+ ## In Transformers
38
+ ```python
39
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
40
+
41
+ model_name = "alon-albalak/bert-base-multilingual-xquad"
42
+
43
+ # a) Get predictions
44
+ nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
45
+ QA_input = {
46
+ 'question': 'Why is model conversion important?',
47
+ 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
48
+ }
49
+ res = nlp(QA_input)
50
+
51
+ # b) Load model & tokenizer
52
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
53
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
54
+ ```
55
+
56
+ ## In FARM
57
+ ```python
58
+ from farm.modeling.adaptive_model import AdaptiveModel
59
+ from farm.modeling.tokenization import Tokenizer
60
+ from farm.infer import QAInferencer
61
+
62
+ model_name = "alon-albalak/bert-base-multilingual-xquad"
63
+
64
+ # a) Get predictions
65
+ nlp = QAInferencer.load(model_name)
66
+ QA_input = [{"questions": ["Why is model conversion important?"],
67
+ "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
68
+ res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
69
+
70
+ # b) Load model & tokenizer
71
+ model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
72
+ tokenizer = Tokenizer.load(model_name)
73
+ ```
74
+
75
+ ## In Haystack
76
+
77
+ ```python
78
+ reader = FARMReader(model_name_or_path="alon-albalak/bert-base-multilingual-xquad")
79
+ # or
80
+ reader = TransformersReader(model="alon-albalak/bert-base-multilingual-xquad",tokenizer="alon-albalak/bert-base-multilingual-xquad")
81
+ ```
82
+
83
+ Usage instructions for FARM and Haystack were adopted from https://huggingface.co/deepset/xlm-roberta-large-squad2