Create modeling_manta.py
Browse files- modeling_manta.py +1039 -0
modeling_manta.py
ADDED
@@ -0,0 +1,1039 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Mesh TensorFlow authors, Manta Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Manta model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
import warnings
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
+
|
27 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput, Seq2SeqModelOutput
|
28 |
+
from transformers.modeling_utils import PreTrainedModel
|
29 |
+
from transformers.models.longformer import LongformerConfig, LongformerModel
|
30 |
+
from transformers.models.t5.configuration_t5 import T5Config
|
31 |
+
from transformers.models.t5.modeling_t5 import (
|
32 |
+
__HEAD_MASK_WARNING_MSG,
|
33 |
+
T5Attention,
|
34 |
+
T5Stack,
|
35 |
+
)
|
36 |
+
from transformers.utils import (
|
37 |
+
DUMMY_INPUTS,
|
38 |
+
DUMMY_MASK,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_end_docstrings,
|
41 |
+
is_torch_fx_proxy,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from configuration_manta import MantaConfig
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
_CONFIG_FOR_DOC = "MantaConfig"
|
51 |
+
_TOKENIZER_FOR_DOC = "ByT5Tokenizer"
|
52 |
+
|
53 |
+
MANTA_PRETRAINED_MODEL_ARCHIVE_LIST = []
|
54 |
+
|
55 |
+
|
56 |
+
def gaussian_pdf(x):
|
57 |
+
return torch.exp(-x * x / 2.0)
|
58 |
+
|
59 |
+
|
60 |
+
def pad_block_embeddings(block_embeddings, pad_length):
|
61 |
+
if not pad_length:
|
62 |
+
return block_embeddings
|
63 |
+
|
64 |
+
padding_tensor_len = max(pad_length - block_embeddings.size(1), 0)
|
65 |
+
|
66 |
+
padding_tensor = torch.zeros(
|
67 |
+
(block_embeddings.size(0), padding_tensor_len, block_embeddings.size(2)),
|
68 |
+
device=block_embeddings.device,
|
69 |
+
dtype=block_embeddings.dtype,
|
70 |
+
)
|
71 |
+
return torch.cat([block_embeddings[:, :pad_length, :], padding_tensor], dim=1)
|
72 |
+
|
73 |
+
|
74 |
+
@add_end_docstrings()
|
75 |
+
@dataclass
|
76 |
+
class MantaSeq2SeqLMOutput(Seq2SeqLMOutput):
|
77 |
+
"""
|
78 |
+
Base class for Manta encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
|
79 |
+
decoding.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
83 |
+
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
84 |
+
|
85 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
86 |
+
hidden_size)` is output.
|
87 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
88 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
89 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
90 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
91 |
+
|
92 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
93 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
94 |
+
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
95 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
96 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
97 |
+
|
98 |
+
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
|
99 |
+
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
100 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
101 |
+
sequence_length)`.
|
102 |
+
|
103 |
+
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
|
104 |
+
self-attention heads.
|
105 |
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
106 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
107 |
+
sequence_length)`.
|
108 |
+
|
109 |
+
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
|
110 |
+
weighted average in the cross-attention heads.
|
111 |
+
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
112 |
+
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
113 |
+
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
114 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
115 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
116 |
+
|
117 |
+
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
|
118 |
+
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
119 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
120 |
+
sequence_length)`.
|
121 |
+
|
122 |
+
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
|
123 |
+
self-attention heads.
|
124 |
+
frontier_predictions: (`torch.FloatTensor`, *optional*, of shape `(batch_size, sequence_length, 1)`):
|
125 |
+
Probability scores of being a frontier as predicted by the FrontierPredictor module.
|
126 |
+
"""
|
127 |
+
|
128 |
+
frontier_predictions: Optional[torch.FloatTensor] = None
|
129 |
+
|
130 |
+
|
131 |
+
@dataclass
|
132 |
+
class MantaBaseModelOutput(BaseModelOutput):
|
133 |
+
"""
|
134 |
+
Base class for Manta's outputs, with potential hidden states, attentions and Manta's frontier predictions.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
138 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
139 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
140 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
141 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
142 |
+
|
143 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
144 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
145 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
146 |
+
sequence_length)`.
|
147 |
+
|
148 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
149 |
+
heads.
|
150 |
+
frontier_predictions: (`torch.FloatTensor`, *optional*, of shape `(batch_size, sequence_length, 1)`):
|
151 |
+
Probability scores of being a frontier as predicted by the FrontierPredictor module.
|
152 |
+
"""
|
153 |
+
|
154 |
+
frontier_predictions: Optional[torch.FloatTensor] = None
|
155 |
+
|
156 |
+
|
157 |
+
class MantaFrontierPredictor(nn.Module):
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
hidden_size,
|
161 |
+
num_layers,
|
162 |
+
num_attention_heads,
|
163 |
+
dropout_rate,
|
164 |
+
attention_window,
|
165 |
+
max_length,
|
166 |
+
):
|
167 |
+
super().__init__()
|
168 |
+
|
169 |
+
# First, find out what the maximum position will be after tensors are padded to a multiple of local_transformer_attention_window.
|
170 |
+
# Then, add 1 because LongFormer position embeddings are bugged when passed inputs_embeds.
|
171 |
+
max_position_embeddings = (max_length // attention_window + 1) * attention_window + 1
|
172 |
+
self.hidden_size = hidden_size
|
173 |
+
|
174 |
+
self.config = LongformerConfig(
|
175 |
+
attention_probs_dropout_prob=dropout_rate,
|
176 |
+
attention_window=attention_window,
|
177 |
+
hidden_act="gelu",
|
178 |
+
hidden_dropout_prob=dropout_rate,
|
179 |
+
hidden_size=hidden_size,
|
180 |
+
intermediate_size=hidden_size * 4,
|
181 |
+
max_position_embeddings=max_position_embeddings,
|
182 |
+
num_attention_heads=num_attention_heads,
|
183 |
+
num_hidden_layers=num_layers,
|
184 |
+
position_embedding_type="absolute", # Actually cannot be changed
|
185 |
+
vocab_size=1, # Remove almost entirely the embeddings
|
186 |
+
pad_token_id=0,
|
187 |
+
)
|
188 |
+
self.local_transformer = LongformerModel(self.config)
|
189 |
+
|
190 |
+
self.output_projection = nn.Linear(hidden_size, 1)
|
191 |
+
|
192 |
+
def forward(self, embeddings, attention_mask):
|
193 |
+
longformer_output = self.local_transformer(inputs_embeds=embeddings, attention_mask=attention_mask)
|
194 |
+
|
195 |
+
projection_outputs = self.output_projection(longformer_output.last_hidden_state)
|
196 |
+
|
197 |
+
frontier_predictions = torch.sigmoid(projection_outputs.squeeze(-1))
|
198 |
+
|
199 |
+
return frontier_predictions
|
200 |
+
|
201 |
+
|
202 |
+
class MantaConvFeatures(nn.Module):
|
203 |
+
def __init__(
|
204 |
+
self,
|
205 |
+
in_channels,
|
206 |
+
out_channels,
|
207 |
+
kernel_size,
|
208 |
+
groups,
|
209 |
+
padding,
|
210 |
+
):
|
211 |
+
"""
|
212 |
+
This nn.Module "decomposes" the convolution in order to extract and cache feature maps. This amounts to
|
213 |
+
computing an element-wise multiplication between weights of size (hidden_dim, kernel_size) and the input.
|
214 |
+
"""
|
215 |
+
super().__init__()
|
216 |
+
self.in_channels = in_channels
|
217 |
+
self.out_channels = out_channels
|
218 |
+
self.kernel_size = kernel_size
|
219 |
+
self.groups = groups
|
220 |
+
self.padding = padding
|
221 |
+
|
222 |
+
if groups == in_channels:
|
223 |
+
assert (
|
224 |
+
in_channels == out_channels
|
225 |
+
), "When using `groups = in_channels`, make sure to have `in_channels == out_channels`"
|
226 |
+
self.weight = nn.Parameter(torch.Tensor(1, 1, kernel_size, out_channels))
|
227 |
+
elif self.groups == 1:
|
228 |
+
self.weight = nn.Parameter(torch.Tensor(in_channels, out_channels, kernel_size))
|
229 |
+
else:
|
230 |
+
raise ValueError("MantaConvFeatures only supports `groups = 1` or `groups = in_channels`")
|
231 |
+
|
232 |
+
left_pad = (kernel_size - 1) // 2
|
233 |
+
self.pad = (left_pad, kernel_size - 1 - left_pad)
|
234 |
+
|
235 |
+
self.reset_parameters()
|
236 |
+
|
237 |
+
def reset_parameters(self):
|
238 |
+
"""
|
239 |
+
See https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv1d, in the `_ConvNd` class :
|
240 |
+
> Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
|
241 |
+
> uniform(-1/sqrt(k), 1/sqrt(k)), where k = weight.size(1) * prod(*kernel_size)
|
242 |
+
> For more details see: https://github.com/pytorch/pytorch/issues/15314#issuecomment-477448573"
|
243 |
+
|
244 |
+
The reason we permute the weights before init is because `kaiming_uniform_` uses the number of in and out
|
245 |
+
features for initialization, which are computed as tensor.size(0) and tensor.size(1). However, these
|
246 |
+
dimensions do not correspond for my weights.
|
247 |
+
"""
|
248 |
+
if self.groups == self.out_channels:
|
249 |
+
nn.init.kaiming_uniform_(self.weight.permute(3, 0, 1, 2), a=math.sqrt(5))
|
250 |
+
else:
|
251 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
252 |
+
|
253 |
+
def forward(self, x: torch.Tensor):
|
254 |
+
if self.groups == 1:
|
255 |
+
return self.forward_matmul(x)
|
256 |
+
else:
|
257 |
+
return self.forward_elementwise(x)
|
258 |
+
|
259 |
+
def forward_matmul(self, x: torch.Tensor):
|
260 |
+
|
261 |
+
if self.padding == "same":
|
262 |
+
padded_x = self._pad_pre_conv(x)
|
263 |
+
else:
|
264 |
+
padded_x = x
|
265 |
+
|
266 |
+
bs, _, seq_len = padded_x.size()
|
267 |
+
|
268 |
+
padded_x = padded_x.transpose(-1, -2)
|
269 |
+
# Size: (bs, seq_len+pad, hidden)
|
270 |
+
|
271 |
+
out = padded_x.matmul(self.weight.view(self.weight.size(0), -1)).view(bs, seq_len, self.out_channels, -1)
|
272 |
+
# Size: (bs, seq_len+pad, hidden, kernel_size)
|
273 |
+
|
274 |
+
return out.permute(0, 2, 3, 1)
|
275 |
+
|
276 |
+
def forward_elementwise(self, x: torch.Tensor):
|
277 |
+
assert len(x.size()) == 3
|
278 |
+
assert x.size(1) == self.out_channels
|
279 |
+
# Size: (bs, hidden, seq_len)
|
280 |
+
|
281 |
+
if self.padding == "same":
|
282 |
+
padded_x = self._pad_pre_conv(x)
|
283 |
+
else:
|
284 |
+
padded_x = x
|
285 |
+
|
286 |
+
# Unsqueeze for broadcasting with the kernel_size dim of the filters
|
287 |
+
padded_x = padded_x.transpose(-1, -2).unsqueeze(2)
|
288 |
+
# Size: (bs, seq_len, 1, hidden)
|
289 |
+
|
290 |
+
out = padded_x * self.weight
|
291 |
+
# Size: (bs, seq_len, kernel_size, hidden)
|
292 |
+
|
293 |
+
return out.transpose(1, 3)
|
294 |
+
|
295 |
+
def _pad_pre_conv(self, inp: torch.Tensor):
|
296 |
+
"""
|
297 |
+
Pad with zeros at the beginning and end just like `nn.Conv1d`.
|
298 |
+
"""
|
299 |
+
return nn.functional.pad(inp, self.pad, "constant", 0.0)
|
300 |
+
|
301 |
+
def extra_repr(self):
|
302 |
+
return "in_features={}, out_features={}, kernel_size={}, groups={}".format(
|
303 |
+
self.in_channels, self.out_channels, self.kernel_size, self.groups
|
304 |
+
)
|
305 |
+
|
306 |
+
|
307 |
+
class MantaCachedConvolutionPooling(nn.Module):
|
308 |
+
def __init__(
|
309 |
+
self,
|
310 |
+
padding_length,
|
311 |
+
output_dim,
|
312 |
+
kernel_size,
|
313 |
+
hidden_dim,
|
314 |
+
depthwise_convolution,
|
315 |
+
variance_regularization,
|
316 |
+
mean_pool,
|
317 |
+
):
|
318 |
+
super().__init__()
|
319 |
+
self.padding_length = padding_length
|
320 |
+
self.output_dim = output_dim
|
321 |
+
self.kernel_size = kernel_size
|
322 |
+
self.hidden_dim = hidden_dim
|
323 |
+
self.depthwise_convolution = depthwise_convolution
|
324 |
+
self.variance_regularization = variance_regularization
|
325 |
+
self.mean_pool = mean_pool
|
326 |
+
|
327 |
+
if isinstance(self.kernel_size, int):
|
328 |
+
self.kernel_size = [[self.kernel_size, hidden_dim]]
|
329 |
+
|
330 |
+
self.conv_output_dim = sum([k_dim[1] for k_dim in self.kernel_size])
|
331 |
+
|
332 |
+
# Since the sum of the hidden dimensions of all the filters might not match the language model hidden size, we
|
333 |
+
# specify it here
|
334 |
+
self.out_projection = nn.Linear(self.conv_output_dim, self.output_dim, bias=True)
|
335 |
+
|
336 |
+
self.conv_layers = nn.Sequential(
|
337 |
+
*[
|
338 |
+
MantaConvFeatures(self.hidden_dim, h, k, groups=h if self.depthwise_convolution else 1, padding="same")
|
339 |
+
for (k, h) in self.kernel_size
|
340 |
+
]
|
341 |
+
)
|
342 |
+
|
343 |
+
self.eps = None
|
344 |
+
self.conv_layer = None
|
345 |
+
|
346 |
+
def forward(self, unconstrained_separation_probs: torch.Tensor, byte_embeddings: torch.Tensor):
|
347 |
+
device = unconstrained_separation_probs.device
|
348 |
+
if self.eps is None:
|
349 |
+
self.eps = 5 * torch.finfo(unconstrained_separation_probs.dtype).resolution
|
350 |
+
self.variance_regularization = max(self.eps, self.variance_regularization)
|
351 |
+
|
352 |
+
if self.conv_layer is not None:
|
353 |
+
self.conv_layer = self.conv_layer.to(device)
|
354 |
+
batch_size, seq_len = byte_embeddings.shape[:2]
|
355 |
+
|
356 |
+
# We set the probability of the first token to be 0 therwise the cumsum will not work
|
357 |
+
separation_probs = unconstrained_separation_probs.clone()
|
358 |
+
separation_probs[:, 0] = 0
|
359 |
+
|
360 |
+
assert separation_probs.shape == (batch_size, seq_len)
|
361 |
+
|
362 |
+
# Compute the moments of the block_id random variable
|
363 |
+
block_id_expectation = separation_probs.cumsum(axis=-1)
|
364 |
+
block_id_std = torch.sqrt(
|
365 |
+
(separation_probs * (1.0 - separation_probs)).cumsum(axis=-1) + self.variance_regularization
|
366 |
+
)
|
367 |
+
|
368 |
+
# Get the maximum number of blocks
|
369 |
+
max_nb_blocks = min(seq_len, (block_id_expectation + 3 * block_id_std).max().int().item() + 1)
|
370 |
+
possible_blocks_id = torch.arange(max_nb_blocks).to(device)
|
371 |
+
|
372 |
+
# Get the block/byte proba using the Gaussian PDF
|
373 |
+
log_scale = block_id_std[:, None, :].log()
|
374 |
+
log_proba = (
|
375 |
+
-((block_id_expectation[:, None, :] - possible_blocks_id[None, :, None]) ** 2)
|
376 |
+
/ (2 * block_id_std[:, None, :])
|
377 |
+
- log_scale
|
378 |
+
- math.log((2 * math.pi) ** 0.5)
|
379 |
+
)
|
380 |
+
block_byte_proba = log_proba.softmax(-2)
|
381 |
+
|
382 |
+
token_size = block_byte_proba.sum(-1, keepdim=True)
|
383 |
+
regularized_token_size = torch.maximum(token_size, torch.ones_like(token_size))
|
384 |
+
|
385 |
+
if self.mean_pool:
|
386 |
+
block_byte_proba_normalized = block_byte_proba / regularized_token_size
|
387 |
+
else:
|
388 |
+
# Makes no sense to regularize using sequence length in the max_pooling case.
|
389 |
+
block_byte_proba_normalized = block_byte_proba
|
390 |
+
|
391 |
+
block_embeddings = self.pooling(byte_embeddings, block_byte_proba_normalized)
|
392 |
+
|
393 |
+
pad_length = min(self.padding_length, max_nb_blocks)
|
394 |
+
|
395 |
+
block_embeddings = pad_block_embeddings(block_embeddings, pad_length)
|
396 |
+
block_embeddings = self.out_projection(block_embeddings)
|
397 |
+
|
398 |
+
return block_embeddings
|
399 |
+
|
400 |
+
def pooling(self, embeddings: torch.Tensor, block_byte_proba: torch.Tensor):
|
401 |
+
block_embeddings = []
|
402 |
+
|
403 |
+
for conv_layer in self.conv_layers:
|
404 |
+
# First, compute the convolution maps SEPARATELY, i.e. without summing them together, only the element wise multiplication
|
405 |
+
# This is similar to a cache that we'll reuse for each block probabilities.
|
406 |
+
features = conv_layer(embeddings.transpose(1, 2)).permute(0, 3, 1, 2)
|
407 |
+
# Size : (batch_size, seq_len + padding, hidden_dim, kernel_size)
|
408 |
+
|
409 |
+
pad = conv_layer.pad
|
410 |
+
|
411 |
+
for i in range(0, conv_layer.kernel_size):
|
412 |
+
# We shift like that to match the padding done inside `conv_layer`
|
413 |
+
features[..., i] = features[..., i].roll(pad[0] - i, 1)
|
414 |
+
# Cut out the padded vector to obtain the right sequence length at the end
|
415 |
+
features = features[:, pad[1] : features.size(1) - pad[0]]
|
416 |
+
# Size : (batch_size, seq_len, hidden_dim, kernel_size)
|
417 |
+
|
418 |
+
# Then, artificially sum the convolution features by shifting the input bytes
|
419 |
+
padded_block_byte_proba = nn.functional.pad(block_byte_proba, pad, "constant", 0.0)
|
420 |
+
expanded_block_byte_proba = []
|
421 |
+
for i in range(0, conv_layer.kernel_size):
|
422 |
+
rolled_proba = padded_block_byte_proba.clone().roll(pad[0] - i, -1)
|
423 |
+
expanded_block_byte_proba.append(rolled_proba)
|
424 |
+
expanded_block_byte_proba = torch.stack(expanded_block_byte_proba, -1)
|
425 |
+
# We use :tensor.size(2) - pad instead of just :-pad because if pad = 0, we have an undesired behaviour where the whole sequence is removed
|
426 |
+
expanded_block_byte_proba = expanded_block_byte_proba[
|
427 |
+
:, :, pad[1] : expanded_block_byte_proba.size(2) - pad[0], :
|
428 |
+
]
|
429 |
+
# Size : (batch_size, block_size, seq_len, kernel_size)
|
430 |
+
|
431 |
+
if self.mean_pool:
|
432 |
+
convolved = torch.einsum("b s h k, b B s k -> b B h", features, expanded_block_byte_proba)
|
433 |
+
else:
|
434 |
+
convolved = torch.einsum("b s h k, b B s k -> b B s h", features, expanded_block_byte_proba)
|
435 |
+
convolved = convolved.max(dim=-2).values
|
436 |
+
|
437 |
+
block_embeddings.append(convolved)
|
438 |
+
|
439 |
+
block_embeddings = torch.cat(block_embeddings, dim=-1)
|
440 |
+
|
441 |
+
return block_embeddings
|
442 |
+
|
443 |
+
|
444 |
+
class MantaPreTrainedModel(PreTrainedModel):
|
445 |
+
"""
|
446 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
447 |
+
models.
|
448 |
+
"""
|
449 |
+
|
450 |
+
config_class = MantaConfig
|
451 |
+
base_model_prefix = "transformer"
|
452 |
+
supports_gradient_checkpointing = True
|
453 |
+
|
454 |
+
def _init_weights(self, module):
|
455 |
+
"""Initialize the weights"""
|
456 |
+
pass
|
457 |
+
|
458 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
459 |
+
if isinstance(module, (T5Attention, T5Stack)):
|
460 |
+
module.gradient_checkpointing = value
|
461 |
+
|
462 |
+
def _shift_right(self, input_ids):
|
463 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
464 |
+
pad_token_id = self.config.pad_token_id
|
465 |
+
|
466 |
+
assert decoder_start_token_id is not None, (
|
467 |
+
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
|
468 |
+
" See T5 docs for more information"
|
469 |
+
)
|
470 |
+
|
471 |
+
# shift inputs to the right
|
472 |
+
if is_torch_fx_proxy(input_ids):
|
473 |
+
# Item assignment is not supported natively for proxies.
|
474 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
475 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
476 |
+
else:
|
477 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
478 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
479 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
480 |
+
|
481 |
+
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
482 |
+
# replace possible -100 values in labels by `pad_token_id`
|
483 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
484 |
+
|
485 |
+
return shifted_input_ids
|
486 |
+
|
487 |
+
|
488 |
+
@add_start_docstrings(
|
489 |
+
"The bare Manta Model transformer outputting encoder's raw hidden-states without any specific head on top."
|
490 |
+
)
|
491 |
+
class MantaEncoderModel(MantaPreTrainedModel):
|
492 |
+
authorized_missing_keys = [
|
493 |
+
r"encoder.embed_tokens.weight",
|
494 |
+
]
|
495 |
+
|
496 |
+
def __init__(self, config: MantaConfig):
|
497 |
+
super().__init__(config)
|
498 |
+
self.byte_embeddings = nn.Embedding(config.vocab_size, config.byte_embedding_dim)
|
499 |
+
|
500 |
+
self.frontier_predictor = MantaFrontierPredictor(
|
501 |
+
hidden_size=config.byte_embedding_dim,
|
502 |
+
num_layers=config.frontier_predictor_num_layers,
|
503 |
+
num_attention_heads=config.frontier_predictor_num_attention_heads,
|
504 |
+
dropout_rate=config.dropout_rate,
|
505 |
+
attention_window=config.frontier_predictor_attention_window,
|
506 |
+
max_length=config.max_length_inputs,
|
507 |
+
)
|
508 |
+
|
509 |
+
self.pooler = MantaCachedConvolutionPooling(
|
510 |
+
padding_length=config.max_length_encoder_decoder,
|
511 |
+
output_dim=config.d_model,
|
512 |
+
kernel_size=config.pooling_kernel_size,
|
513 |
+
hidden_dim=config.byte_embedding_dim,
|
514 |
+
depthwise_convolution=config.pooling_depthwise_convolution,
|
515 |
+
variance_regularization=config.pooling_variance_regularization,
|
516 |
+
mean_pool=config.pooling_mean_pool,
|
517 |
+
)
|
518 |
+
|
519 |
+
self.t5_encoder = T5Stack(
|
520 |
+
T5Config(
|
521 |
+
d_model=config.d_model,
|
522 |
+
d_kv=config.d_kv,
|
523 |
+
d_ff=config.d_ff,
|
524 |
+
num_layers=config.num_layers,
|
525 |
+
num_heads=config.num_heads,
|
526 |
+
relative_attention_num_buckets=config.relative_attention_num_buckets,
|
527 |
+
relative_attention_max_distance=config.relative_attention_max_distance,
|
528 |
+
dropout_rate=config.dropout_rate,
|
529 |
+
layer_norm_epsilon=config.layer_norm_epsilon,
|
530 |
+
initializer_factor=config.initializer_factor,
|
531 |
+
feed_forward_proj=config.feed_forward_proj,
|
532 |
+
pad_token_id=config.pad_token_id,
|
533 |
+
eos_token_id=config.eos_token_id,
|
534 |
+
is_decoder=False,
|
535 |
+
use_cache=False,
|
536 |
+
)
|
537 |
+
)
|
538 |
+
|
539 |
+
# Initialize weights and apply final processing
|
540 |
+
self.post_init()
|
541 |
+
|
542 |
+
def get_input_embeddings(self):
|
543 |
+
return self.byte_embeddings
|
544 |
+
|
545 |
+
def set_input_embeddings(self, new_embeddings):
|
546 |
+
self.byte_embeddings = new_embeddings
|
547 |
+
|
548 |
+
def _prune_heads(self, heads_to_prune):
|
549 |
+
"""
|
550 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
551 |
+
class PreTrainedModel
|
552 |
+
"""
|
553 |
+
for layer, heads in heads_to_prune.items():
|
554 |
+
self.t5_encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
|
555 |
+
|
556 |
+
def _compute_pooled_representations(
|
557 |
+
self,
|
558 |
+
input_ids: Optional[torch.LongTensor] = None,
|
559 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
560 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
561 |
+
):
|
562 |
+
if inputs_embeds is None and input_ids is None:
|
563 |
+
return None
|
564 |
+
|
565 |
+
byte_embeddings = inputs_embeds if inputs_embeds is not None else self.byte_embeddings(input_ids)
|
566 |
+
|
567 |
+
frontier_predictions = self.frontier_predictor(byte_embeddings, attention_mask)
|
568 |
+
|
569 |
+
pooled_representations = self.pooler(frontier_predictions, byte_embeddings)
|
570 |
+
|
571 |
+
return pooled_representations, frontier_predictions
|
572 |
+
|
573 |
+
@replace_return_docstrings(output_type=MantaBaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
input_ids: Optional[torch.LongTensor] = None,
|
577 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
578 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
579 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
580 |
+
output_attentions: Optional[bool] = None,
|
581 |
+
output_hidden_states: Optional[bool] = None,
|
582 |
+
return_dict: Optional[bool] = None,
|
583 |
+
) -> Union[Tuple[torch.FloatTensor], MantaBaseModelOutput]:
|
584 |
+
r"""
|
585 |
+
Returns:
|
586 |
+
|
587 |
+
Example:
|
588 |
+
|
589 |
+
```python
|
590 |
+
>>> from transformers import ByT5Tokenizer, MantaEncoderModel
|
591 |
+
|
592 |
+
>>> tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
|
593 |
+
>>> model = MantaEncoderModel.from_pretrained("nthngdy/manta-small")
|
594 |
+
>>> input_ids = tokenizer(
|
595 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
596 |
+
... ).input_ids # Batch size 1
|
597 |
+
>>> outputs = model(input_ids=input_ids)
|
598 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
599 |
+
```"""
|
600 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
601 |
+
output_hidden_states = (
|
602 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
603 |
+
)
|
604 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
605 |
+
|
606 |
+
pooled_representations, frontier_predictions = self._compute_pooled_representations(
|
607 |
+
input_ids, attention_mask, inputs_embeds
|
608 |
+
)
|
609 |
+
|
610 |
+
encoder_outputs = self.t5_encoder(
|
611 |
+
inputs_embeds=pooled_representations,
|
612 |
+
head_mask=head_mask,
|
613 |
+
output_attentions=output_attentions,
|
614 |
+
output_hidden_states=output_hidden_states,
|
615 |
+
return_dict=return_dict,
|
616 |
+
)
|
617 |
+
|
618 |
+
if not return_dict:
|
619 |
+
return encoder_outputs + (frontier_predictions,)
|
620 |
+
|
621 |
+
return MantaBaseModelOutput(frontier_predictions=frontier_predictions, **encoder_outputs)
|
622 |
+
|
623 |
+
|
624 |
+
class MantaModel(MantaPreTrainedModel):
|
625 |
+
_keys_to_ignore_on_load_missing = [
|
626 |
+
r"encoder_decoder.encoder.embed_tokens.weight",
|
627 |
+
r"encoder_decoder.decoder.embed_tokens.weight",
|
628 |
+
]
|
629 |
+
_keys_to_ignore_on_load_unexpected = [
|
630 |
+
r"encoder_decoder.decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
631 |
+
]
|
632 |
+
|
633 |
+
def __init__(self, config: MantaConfig):
|
634 |
+
super().__init__(config)
|
635 |
+
|
636 |
+
self.encoder = MantaEncoderModel(config)
|
637 |
+
|
638 |
+
self.decoder_embeddings = nn.Embedding(config.vocab_size, config.d_model)
|
639 |
+
self.decoder = T5Stack(
|
640 |
+
T5Config(
|
641 |
+
vocab_size=config.vocab_size,
|
642 |
+
d_model=config.d_model,
|
643 |
+
d_kv=config.d_kv,
|
644 |
+
d_ff=config.d_ff,
|
645 |
+
num_layers=config.num_decoder_layers,
|
646 |
+
num_heads=config.num_heads,
|
647 |
+
relative_attention_num_buckets=config.relative_attention_num_buckets,
|
648 |
+
relative_attention_max_distance=config.relative_attention_max_distance,
|
649 |
+
dropout_rate=config.dropout_rate,
|
650 |
+
layer_norm_epsilon=config.layer_norm_epsilon,
|
651 |
+
initializer_factor=config.initializer_factor,
|
652 |
+
feed_forward_proj=config.feed_forward_proj,
|
653 |
+
use_cache=config.use_cache,
|
654 |
+
pad_token_id=config.pad_token_id,
|
655 |
+
eos_token_id=config.eos_token_id,
|
656 |
+
is_decoder=True,
|
657 |
+
is_encoder_decoder=False,
|
658 |
+
),
|
659 |
+
self.decoder_embeddings,
|
660 |
+
)
|
661 |
+
|
662 |
+
# Initialize weights and apply final processing
|
663 |
+
self.post_init()
|
664 |
+
|
665 |
+
def get_input_embeddings(self):
|
666 |
+
return self.encoder.get_input_embeddings()
|
667 |
+
|
668 |
+
def set_input_embeddings(self, new_embeddings):
|
669 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
670 |
+
|
671 |
+
def get_encoder(self):
|
672 |
+
return self.encoder
|
673 |
+
|
674 |
+
def get_decoder(self):
|
675 |
+
return self.decoder
|
676 |
+
|
677 |
+
def _prune_heads(self, heads_to_prune):
|
678 |
+
"""
|
679 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
680 |
+
class PreTrainedModel
|
681 |
+
"""
|
682 |
+
for layer, heads in heads_to_prune.items():
|
683 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
684 |
+
|
685 |
+
@replace_return_docstrings(output_type=MantaSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
686 |
+
def forward(
|
687 |
+
self,
|
688 |
+
input_ids: Optional[torch.LongTensor] = None,
|
689 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
690 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
691 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
692 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
693 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
694 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
695 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
696 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
697 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
698 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
699 |
+
use_cache: Optional[bool] = None,
|
700 |
+
output_attentions: Optional[bool] = None,
|
701 |
+
output_hidden_states: Optional[bool] = None,
|
702 |
+
return_dict: Optional[bool] = None,
|
703 |
+
) -> Union[Tuple[torch.FloatTensor], MantaSeq2SeqLMOutput]:
|
704 |
+
r"""
|
705 |
+
Returns:
|
706 |
+
|
707 |
+
Example:
|
708 |
+
|
709 |
+
```python
|
710 |
+
>>> from transformers import ByT5Tokenizer, MantaModel
|
711 |
+
|
712 |
+
>>> tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
|
713 |
+
>>> model = MantaModel.from_pretrained("nthngdy/manta-small")
|
714 |
+
|
715 |
+
>>> input_ids = tokenizer(
|
716 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
717 |
+
... ).input_ids # Batch size 1
|
718 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
719 |
+
|
720 |
+
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MantaModel.
|
721 |
+
>>> # This is not needed for torch's MantaForConditionalGeneration as it does this internally using labels arg.
|
722 |
+
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
|
723 |
+
|
724 |
+
>>> # forward pass
|
725 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
726 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
727 |
+
```"""
|
728 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
729 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
730 |
+
output_hidden_states = (
|
731 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
732 |
+
)
|
733 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
734 |
+
|
735 |
+
if encoder_outputs is None:
|
736 |
+
encoder_outputs = self.encoder(
|
737 |
+
input_ids=input_ids,
|
738 |
+
attention_mask=attention_mask,
|
739 |
+
inputs_embeds=inputs_embeds,
|
740 |
+
head_mask=head_mask,
|
741 |
+
output_attentions=output_attentions,
|
742 |
+
output_hidden_states=output_hidden_states,
|
743 |
+
return_dict=return_dict,
|
744 |
+
)
|
745 |
+
elif return_dict and not isinstance(encoder_outputs, MantaBaseModelOutput):
|
746 |
+
encoder_outputs = MantaBaseModelOutput(
|
747 |
+
last_hidden_state=encoder_outputs[0],
|
748 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
749 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
750 |
+
frontier_predictions=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
|
751 |
+
)
|
752 |
+
|
753 |
+
hidden_states = encoder_outputs[0]
|
754 |
+
|
755 |
+
decoder_outputs = self.decoder(
|
756 |
+
input_ids=decoder_input_ids,
|
757 |
+
attention_mask=decoder_attention_mask,
|
758 |
+
encoder_hidden_states=hidden_states,
|
759 |
+
encoder_attention_mask=attention_mask,
|
760 |
+
inputs_embeds=decoder_inputs_embeds,
|
761 |
+
head_mask=decoder_head_mask,
|
762 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
763 |
+
past_key_values=past_key_values,
|
764 |
+
use_cache=use_cache,
|
765 |
+
output_attentions=output_attentions,
|
766 |
+
output_hidden_states=output_hidden_states,
|
767 |
+
return_dict=return_dict,
|
768 |
+
)
|
769 |
+
|
770 |
+
if not return_dict:
|
771 |
+
return decoder_outputs + encoder_outputs
|
772 |
+
|
773 |
+
return MantaSeq2SeqLMOutput(
|
774 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
775 |
+
past_key_values=decoder_outputs.past_key_values,
|
776 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
777 |
+
decoder_attentions=decoder_outputs.attentions,
|
778 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
779 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
780 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
781 |
+
encoder_attentions=encoder_outputs.attentions,
|
782 |
+
frontier_predictions=encoder_outputs.frontier_predictions,
|
783 |
+
)
|
784 |
+
|
785 |
+
|
786 |
+
@add_start_docstrings("""Manta Model with a `language modeling` head on top.""")
|
787 |
+
class MantaForConditionalGeneration(MantaPreTrainedModel):
|
788 |
+
_keys_to_ignore_on_load_missing = [
|
789 |
+
r"encoder.embed_tokens.weight",
|
790 |
+
r"decoder.embed_tokens.weight",
|
791 |
+
r"lm_head.weight",
|
792 |
+
]
|
793 |
+
_keys_to_ignore_on_load_unexpected = [
|
794 |
+
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
795 |
+
]
|
796 |
+
|
797 |
+
def __init__(self, config: MantaConfig):
|
798 |
+
super().__init__(config)
|
799 |
+
self.model_dim = config.d_model
|
800 |
+
|
801 |
+
self.encoder = MantaEncoderModel(config)
|
802 |
+
|
803 |
+
self.decoder_embeddings = nn.Embedding(config.vocab_size, config.d_model)
|
804 |
+
self.decoder = T5Stack(
|
805 |
+
T5Config(
|
806 |
+
vocab_size=config.vocab_size,
|
807 |
+
d_model=config.d_model,
|
808 |
+
d_kv=config.d_kv,
|
809 |
+
d_ff=config.d_ff,
|
810 |
+
num_layers=config.num_decoder_layers,
|
811 |
+
num_heads=config.num_heads,
|
812 |
+
relative_attention_num_buckets=config.relative_attention_num_buckets,
|
813 |
+
relative_attention_max_distance=config.relative_attention_max_distance,
|
814 |
+
dropout_rate=config.dropout_rate,
|
815 |
+
layer_norm_epsilon=config.layer_norm_epsilon,
|
816 |
+
initializer_factor=config.initializer_factor,
|
817 |
+
feed_forward_proj=config.feed_forward_proj,
|
818 |
+
use_cache=config.use_cache,
|
819 |
+
pad_token_id=config.pad_token_id,
|
820 |
+
eos_token_id=config.eos_token_id,
|
821 |
+
is_decoder=True,
|
822 |
+
is_encoder_decoder=False,
|
823 |
+
),
|
824 |
+
self.decoder_embeddings,
|
825 |
+
)
|
826 |
+
|
827 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
828 |
+
|
829 |
+
# Initialize weights and apply final processing
|
830 |
+
self.post_init()
|
831 |
+
|
832 |
+
def get_input_embeddings(self):
|
833 |
+
return self.encoder.get_input_embeddings()
|
834 |
+
|
835 |
+
def set_input_embeddings(self, new_embeddings):
|
836 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
837 |
+
|
838 |
+
def set_output_embeddings(self, new_embeddings):
|
839 |
+
self.lm_head = new_embeddings
|
840 |
+
|
841 |
+
def get_output_embeddings(self):
|
842 |
+
return self.lm_head
|
843 |
+
|
844 |
+
def get_encoder(self):
|
845 |
+
return self.encoder
|
846 |
+
|
847 |
+
def get_decoder(self):
|
848 |
+
return self.decoder
|
849 |
+
|
850 |
+
@replace_return_docstrings(output_type=MantaSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
851 |
+
def forward(
|
852 |
+
self,
|
853 |
+
input_ids: Optional[torch.LongTensor] = None,
|
854 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
855 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
856 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
857 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
858 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
859 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
860 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
861 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
862 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
863 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
864 |
+
labels: Optional[torch.LongTensor] = None,
|
865 |
+
use_cache: Optional[bool] = None,
|
866 |
+
output_attentions: Optional[bool] = None,
|
867 |
+
output_hidden_states: Optional[bool] = None,
|
868 |
+
return_dict: Optional[bool] = None,
|
869 |
+
) -> Union[Tuple[torch.FloatTensor], MantaSeq2SeqLMOutput]:
|
870 |
+
r"""
|
871 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
872 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
873 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
874 |
+
labels in `[0, ..., config.vocab_size]`
|
875 |
+
|
876 |
+
Returns:
|
877 |
+
|
878 |
+
Examples:
|
879 |
+
|
880 |
+
```python
|
881 |
+
>>> from transformers import ByT5Tokenizer, MantaForConditionalGeneration
|
882 |
+
|
883 |
+
>>> tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
|
884 |
+
>>> model = MantaForConditionalGeneration.from_pretrained("nthngdy/manta-small")
|
885 |
+
|
886 |
+
>>> # training
|
887 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
888 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
889 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
890 |
+
>>> loss = outputs.loss
|
891 |
+
>>> logits = outputs.logits
|
892 |
+
|
893 |
+
>>> # inference
|
894 |
+
>>> input_ids = tokenizer(
|
895 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
896 |
+
... ).input_ids # Batch size 1
|
897 |
+
>>> outputs = model.generate(input_ids)
|
898 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
899 |
+
>>> # studies have shown that owning a dog is good for you.
|
900 |
+
```"""
|
901 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
902 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
903 |
+
output_hidden_states = (
|
904 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
905 |
+
)
|
906 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
907 |
+
|
908 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
909 |
+
if head_mask is not None and decoder_head_mask is None:
|
910 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
911 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
912 |
+
decoder_head_mask = head_mask
|
913 |
+
|
914 |
+
# Encode if needed (training, first prediction pass)
|
915 |
+
if encoder_outputs is None:
|
916 |
+
encoder_outputs = self.encoder(
|
917 |
+
input_ids=input_ids,
|
918 |
+
attention_mask=attention_mask,
|
919 |
+
inputs_embeds=inputs_embeds,
|
920 |
+
head_mask=head_mask,
|
921 |
+
output_attentions=output_attentions,
|
922 |
+
output_hidden_states=output_hidden_states,
|
923 |
+
return_dict=return_dict,
|
924 |
+
)
|
925 |
+
elif return_dict and not isinstance(encoder_outputs, MantaBaseModelOutput):
|
926 |
+
encoder_outputs = BaseModelOutput(
|
927 |
+
last_hidden_state=encoder_outputs[0],
|
928 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
929 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
930 |
+
frontier_predictions=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
|
931 |
+
)
|
932 |
+
|
933 |
+
hidden_states = encoder_outputs[0]
|
934 |
+
|
935 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
936 |
+
# get decoder inputs from shifting lm labels to the right
|
937 |
+
decoder_input_ids = self._shift_right(labels)
|
938 |
+
|
939 |
+
# Decode
|
940 |
+
decoder_outputs = self.decoder(
|
941 |
+
input_ids=decoder_input_ids,
|
942 |
+
attention_mask=decoder_attention_mask,
|
943 |
+
inputs_embeds=decoder_inputs_embeds,
|
944 |
+
past_key_values=past_key_values,
|
945 |
+
encoder_hidden_states=hidden_states,
|
946 |
+
head_mask=decoder_head_mask,
|
947 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
948 |
+
use_cache=use_cache,
|
949 |
+
output_attentions=output_attentions,
|
950 |
+
output_hidden_states=output_hidden_states,
|
951 |
+
return_dict=return_dict,
|
952 |
+
)
|
953 |
+
|
954 |
+
sequence_output = decoder_outputs[0]
|
955 |
+
|
956 |
+
if self.config.tie_word_embeddings:
|
957 |
+
# Rescale output before projecting on vocab
|
958 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
959 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
960 |
+
|
961 |
+
lm_logits = self.lm_head(sequence_output)
|
962 |
+
|
963 |
+
loss = None
|
964 |
+
if labels is not None:
|
965 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
966 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
967 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
968 |
+
|
969 |
+
if not return_dict:
|
970 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
971 |
+
return ((loss,) + output) if loss is not None else output
|
972 |
+
|
973 |
+
return MantaSeq2SeqLMOutput(
|
974 |
+
loss=loss,
|
975 |
+
logits=lm_logits,
|
976 |
+
past_key_values=decoder_outputs.past_key_values,
|
977 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
978 |
+
decoder_attentions=decoder_outputs.attentions,
|
979 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
980 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
981 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
982 |
+
encoder_attentions=encoder_outputs.attentions,
|
983 |
+
frontier_predictions=encoder_outputs.frontier_predictions,
|
984 |
+
)
|
985 |
+
|
986 |
+
def prepare_inputs_for_generation(
|
987 |
+
self,
|
988 |
+
input_ids,
|
989 |
+
past=None,
|
990 |
+
attention_mask=None,
|
991 |
+
head_mask=None,
|
992 |
+
decoder_head_mask=None,
|
993 |
+
cross_attn_head_mask=None,
|
994 |
+
use_cache=None,
|
995 |
+
encoder_outputs=None,
|
996 |
+
**kwargs
|
997 |
+
):
|
998 |
+
|
999 |
+
# cut decoder_input_ids if past is used
|
1000 |
+
if past is not None:
|
1001 |
+
input_ids = input_ids[:, -1:]
|
1002 |
+
|
1003 |
+
return {
|
1004 |
+
"decoder_input_ids": input_ids,
|
1005 |
+
"past_key_values": past,
|
1006 |
+
"encoder_outputs": encoder_outputs,
|
1007 |
+
"attention_mask": attention_mask,
|
1008 |
+
"head_mask": head_mask,
|
1009 |
+
"decoder_head_mask": decoder_head_mask,
|
1010 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1011 |
+
"use_cache": use_cache,
|
1012 |
+
}
|
1013 |
+
|
1014 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1015 |
+
return self._shift_right(labels)
|
1016 |
+
|
1017 |
+
def _reorder_cache(self, past, beam_idx):
|
1018 |
+
# if decoder past is not included in output
|
1019 |
+
# speedy decoding is disabled and no need to reorder
|
1020 |
+
if past is None:
|
1021 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
1022 |
+
return past
|
1023 |
+
|
1024 |
+
reordered_decoder_past = ()
|
1025 |
+
for layer_past_states in past:
|
1026 |
+
# get the correct batch idx from layer past batch dim
|
1027 |
+
# batch dim of `past` is at 2nd position
|
1028 |
+
reordered_layer_past_states = ()
|
1029 |
+
for layer_past_state in layer_past_states:
|
1030 |
+
# need to set correct `past` for each of the four key / value states
|
1031 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
1032 |
+
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
1036 |
+
assert len(reordered_layer_past_states) == len(layer_past_states)
|
1037 |
+
|
1038 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
1039 |
+
return reordered_decoder_past
|