wissamantoun
commited on
Commit
•
6c978e9
1
Parent(s):
6ae15dd
Upload folder using huggingface_hub
Browse files- README.md +161 -0
- camembertav2_base_p2_17k_last_layer.yaml +32 -0
- fr_rhapsodie-ud-dev.parsed.conllu +0 -0
- fr_rhapsodie-ud-test.parsed.conllu +0 -0
- model/config.json +1 -0
- model/lexers/camembertav2_base_p2_17k_last_layer/config.json +1 -0
- model/lexers/camembertav2_base_p2_17k_last_layer/model/config.json +41 -0
- model/lexers/camembertav2_base_p2_17k_last_layer/model/special_tokens_map.json +51 -0
- model/lexers/camembertav2_base_p2_17k_last_layer/model/tokenizer.json +0 -0
- model/lexers/camembertav2_base_p2_17k_last_layer/model/tokenizer_config.json +57 -0
- model/lexers/char_level_embeddings/config.json +1 -0
- model/lexers/fasttext/config.json +1 -0
- model/lexers/fasttext/fasttext_model.bin +3 -0
- model/lexers/word_embeddings/config.json +1 -0
- model/weights.pt +3 -0
- train.log +112 -0
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fr
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- deberta-v2
|
6 |
+
- token-classification
|
7 |
+
base_model: almanach/camembertav2-base
|
8 |
+
datasets:
|
9 |
+
- Rhapsodie
|
10 |
+
metrics:
|
11 |
+
- las
|
12 |
+
- upos
|
13 |
+
model-index:
|
14 |
+
- name: almanach/camembertav2-base-rhapsodie
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: token-classification
|
18 |
+
name: Part-of-Speech Tagging
|
19 |
+
dataset:
|
20 |
+
type: Rhapsodie
|
21 |
+
name: Rhapsodie
|
22 |
+
metrics:
|
23 |
+
- name: upos
|
24 |
+
type: upos
|
25 |
+
value: 0.97769
|
26 |
+
verified: false
|
27 |
+
- task:
|
28 |
+
type: token-classification
|
29 |
+
name: Dependency Parsing
|
30 |
+
dataset:
|
31 |
+
type: Rhapsodie
|
32 |
+
name: Rhapsodie
|
33 |
+
metrics:
|
34 |
+
- name: las
|
35 |
+
type: las
|
36 |
+
value: 0.84562
|
37 |
+
verified: false
|
38 |
+
---
|
39 |
+
|
40 |
+
# Model Card for almanach/camembertav2-base-rhapsodie
|
41 |
+
|
42 |
+
almanach/camembertav2-base-rhapsodie is a deberta-v2 model for token classification. It is trained on the Rhapsodie dataset for the task of Part-of-Speech Tagging and Dependency Parsing.
|
43 |
+
The model achieves an f1 score of on the Rhapsodie dataset.
|
44 |
+
|
45 |
+
The model is part of the almanach/camembertav2-base family of model finetunes.
|
46 |
+
|
47 |
+
## Model Details
|
48 |
+
|
49 |
+
### Model Description
|
50 |
+
|
51 |
+
- **Developed by:** Wissam Antoun (Phd Student at Almanach, Inria-Paris)
|
52 |
+
- **Model type:** deberta-v2
|
53 |
+
- **Language(s) (NLP):** French
|
54 |
+
- **License:** MIT
|
55 |
+
- **Finetuned from model :** almanach/camembertav2-base
|
56 |
+
|
57 |
+
### Model Sources
|
58 |
+
|
59 |
+
<!-- Provide the basic links for the model. -->
|
60 |
+
|
61 |
+
- **Repository:** https://github.com/WissamAntoun/camemberta
|
62 |
+
- **Paper:** https://arxiv.org/abs/2411.08868
|
63 |
+
|
64 |
+
## Uses
|
65 |
+
|
66 |
+
The model can be used for token classification tasks in French for Part-of-Speech Tagging and Dependency Parsing.
|
67 |
+
|
68 |
+
## Bias, Risks, and Limitations
|
69 |
+
|
70 |
+
The model may exhibit biases based on the training data. The model may not generalize well to other datasets or tasks. The model may also have limitations in terms of the data it was trained on.
|
71 |
+
|
72 |
+
|
73 |
+
## How to Get Started with the Model
|
74 |
+
|
75 |
+
You can use the models directly with the hopsparser library in server mode https://github.com/hopsparser/hopsparser/blob/main/docs/server.md
|
76 |
+
|
77 |
+
|
78 |
+
## Training Details
|
79 |
+
|
80 |
+
### Training Procedure
|
81 |
+
|
82 |
+
Model trained with the [hopsparser](https://github.com/hopsparser/hopsparser) library on the Rhapsodie dataset.
|
83 |
+
|
84 |
+
|
85 |
+
#### Training Hyperparameters
|
86 |
+
|
87 |
+
```yml
|
88 |
+
# Layer dimensions
|
89 |
+
mlp_input: 1024
|
90 |
+
mlp_tag_hidden: 16
|
91 |
+
mlp_arc_hidden: 512
|
92 |
+
mlp_lab_hidden: 128
|
93 |
+
# Lexers
|
94 |
+
lexers:
|
95 |
+
- name: word_embeddings
|
96 |
+
type: words
|
97 |
+
embedding_size: 256
|
98 |
+
word_dropout: 0.5
|
99 |
+
- name: char_level_embeddings
|
100 |
+
type: chars_rnn
|
101 |
+
embedding_size: 64
|
102 |
+
lstm_output_size: 128
|
103 |
+
- name: fasttext
|
104 |
+
type: fasttext
|
105 |
+
- name: camembertav2_base_p2_17k_last_layer
|
106 |
+
type: bert
|
107 |
+
model: /scratch/camembertv2/runs/models/camembertav2-base-bf16/post/ckpt-p2-17000/pt/discriminator/
|
108 |
+
layers: [11]
|
109 |
+
subwords_reduction: "mean"
|
110 |
+
# Training hyperparameters
|
111 |
+
encoder_dropout: 0.5
|
112 |
+
mlp_dropout: 0.5
|
113 |
+
batch_size: 8
|
114 |
+
epochs: 64
|
115 |
+
lr:
|
116 |
+
base: 0.00003
|
117 |
+
schedule:
|
118 |
+
shape: linear
|
119 |
+
warmup_steps: 100
|
120 |
+
|
121 |
+
```
|
122 |
+
|
123 |
+
#### Results
|
124 |
+
|
125 |
+
**UPOS:** 0.97769
|
126 |
+
**LAS:** 0.84562
|
127 |
+
|
128 |
+
## Technical Specifications
|
129 |
+
|
130 |
+
### Model Architecture and Objective
|
131 |
+
|
132 |
+
deberta-v2 custom model for token classification.
|
133 |
+
|
134 |
+
## Citation
|
135 |
+
|
136 |
+
**BibTeX:**
|
137 |
+
|
138 |
+
```bibtex
|
139 |
+
@misc{antoun2024camembert20smarterfrench,
|
140 |
+
title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection},
|
141 |
+
author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
|
142 |
+
year={2024},
|
143 |
+
eprint={2411.08868},
|
144 |
+
archivePrefix={arXiv},
|
145 |
+
primaryClass={cs.CL},
|
146 |
+
url={https://arxiv.org/abs/2411.08868},
|
147 |
+
}
|
148 |
+
|
149 |
+
@inproceedings{grobol:hal-03223424,
|
150 |
+
title = {Analyse en dépendances du français avec des plongements contextualisés},
|
151 |
+
author = {Grobol, Loïc and Crabbé, Benoît},
|
152 |
+
url = {https://hal.archives-ouvertes.fr/hal-03223424},
|
153 |
+
booktitle = {Actes de la 28ème Conférence sur le Traitement Automatique des Langues Naturelles},
|
154 |
+
eventtitle = {TALN-RÉCITAL 2021},
|
155 |
+
venue = {Lille, France},
|
156 |
+
pdf = {https://hal.archives-ouvertes.fr/hal-03223424/file/HOPS_final.pdf},
|
157 |
+
hal_id = {hal-03223424},
|
158 |
+
hal_version = {v1},
|
159 |
+
}
|
160 |
+
|
161 |
+
```
|
camembertav2_base_p2_17k_last_layer.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Layer dimensions
|
2 |
+
mlp_input: 1024
|
3 |
+
mlp_tag_hidden: 16
|
4 |
+
mlp_arc_hidden: 512
|
5 |
+
mlp_lab_hidden: 128
|
6 |
+
# Lexers
|
7 |
+
lexers:
|
8 |
+
- name: word_embeddings
|
9 |
+
type: words
|
10 |
+
embedding_size: 256
|
11 |
+
word_dropout: 0.5
|
12 |
+
- name: char_level_embeddings
|
13 |
+
type: chars_rnn
|
14 |
+
embedding_size: 64
|
15 |
+
lstm_output_size: 128
|
16 |
+
- name: fasttext
|
17 |
+
type: fasttext
|
18 |
+
- name: camembertav2_base_p2_17k_last_layer
|
19 |
+
type: bert
|
20 |
+
model: /scratch/camembertv2/runs/models/camembertav2-base-bf16/post/ckpt-p2-17000/pt/discriminator/
|
21 |
+
layers: [11]
|
22 |
+
subwords_reduction: "mean"
|
23 |
+
# Training hyperparameters
|
24 |
+
encoder_dropout: 0.5
|
25 |
+
mlp_dropout: 0.5
|
26 |
+
batch_size: 8
|
27 |
+
epochs: 64
|
28 |
+
lr:
|
29 |
+
base: 0.00003
|
30 |
+
schedule:
|
31 |
+
shape: linear
|
32 |
+
warmup_steps: 100
|
fr_rhapsodie-ud-dev.parsed.conllu
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fr_rhapsodie-ud-test.parsed.conllu
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mlp_input": 1024, "mlp_tag_hidden": 16, "mlp_arc_hidden": 512, "mlp_lab_hidden": 128, "biased_biaffine": true, "default_batch_size": 8, "encoder_dropout": 0.5, "extra_annotations": {}, "labels": ["acl", "acl:relcl", "advcl", "advcl:cleft", "advmod", "amod", "appos", "aux", "aux:caus", "aux:pass", "case", "cc", "ccomp", "compound", "conj", "cop", "csubj", "csubj:pass", "dep", "dep:comp", "det", "discourse", "dislocated", "expl:subj", "fixed", "flat", "iobj", "mark", "nmod", "nmod:appos", "nsubj", "nsubj:caus", "nsubj:pass", "nummod", "obj", "obj:lvc", "obl:agent", "obl:arg", "obl:mod", "parataxis", "parataxis:insert", "parataxis:parenth", "punct", "reparandum", "root", "vocative", "xcomp"], "mlp_dropout": 0.5, "tagset": ["ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PRON", "PROPN", "PUNCT", "SCONJ", "VERB", "X"], "lexers": {"word_embeddings": "words", "char_level_embeddings": "chars_rnn", "fasttext": "fasttext", "camembertav2_base_p2_17k_last_layer": "bert"}, "multitask_loss": "sum"}
|
model/lexers/camembertav2_base_p2_17k_last_layer/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"layers": [11], "subwords_reduction": "mean", "weight_layers": false}
|
model/lexers/camembertav2_base_p2_17k_last_layer/model/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/scratch/camembertv2/runs/models/camembertav2-base-bf16/post/ckpt-p2-17000/pt/discriminator/",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"conv_act": "gelu",
|
9 |
+
"conv_kernel_size": 0,
|
10 |
+
"embedding_size": 768,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"hidden_dropout_prob": 0.1,
|
14 |
+
"hidden_size": 768,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"layer_norm_eps": 1e-07,
|
18 |
+
"max_position_embeddings": 1024,
|
19 |
+
"max_relative_positions": -1,
|
20 |
+
"model_name": "camembertav2-base-bf16",
|
21 |
+
"model_type": "deberta-v2",
|
22 |
+
"norm_rel_ebd": "layer_norm",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"pooler_dropout": 0,
|
27 |
+
"pooler_hidden_act": "gelu",
|
28 |
+
"pooler_hidden_size": 768,
|
29 |
+
"pos_att_type": [
|
30 |
+
"p2c",
|
31 |
+
"c2p"
|
32 |
+
],
|
33 |
+
"position_biased_input": false,
|
34 |
+
"position_buckets": 256,
|
35 |
+
"relative_attention": true,
|
36 |
+
"share_att_key": true,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.44.2",
|
39 |
+
"type_vocab_size": 0,
|
40 |
+
"vocab_size": 32768
|
41 |
+
}
|
model/lexers/camembertav2_base_p2_17k_last_layer/model/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
model/lexers/camembertav2_base_p2_17k_last_layer/model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/lexers/camembertav2_base_p2_17k_last_layer/model/tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "[CLS]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "[SEP]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "[UNK]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "[CLS]",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
model/lexers/char_level_embeddings/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"char_embeddings_dim": 64, "output_dim": 128, "special_tokens": ["<root>"], "charset": ["<pad>", "<special>", "!", "'", ",", "-", ".", ":", "?", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "~", "\u00c0", "\u00c9", "\u00e0", "\u00e2", "\u00e4", "\u00e7", "\u00e8", "\u00e9", "\u00ea", "\u00ee", "\u00ef", "\u00f4", "\u00f9", "\u00fb", "\u00fc", "\u0153", "\u2026"]}
|
model/lexers/fasttext/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"special_tokens": ["<root>"]}
|
model/lexers/fasttext/fasttext_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e83b5b1c84a99cda52e5f1a5bcf1d389ead407063609663f3d6fd50a4104df7
|
3 |
+
size 800313178
|
model/lexers/word_embeddings/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"embeddings_dim": 256, "unk_word": "<unk>", "vocabulary": ["!", ",", "-ce", "-chose", "-il", "-ils", "-l\u00e0", "-moi", "-m\u00eame", "-t-il", "-vous", ".", ":", "<root>", "<unk>", "?", "A", "Abeba", "Abidal", "Addis", "Aden", "Afrique", "Agutte", "Ag\u00fcero", "Albert", "Aligre", "Alsace", "Alsace-Lorraine", "Al\u00e9sia", "Anelka", "Angleterre", "Antech", "Antoine", "Arabie", "Arago", "Argentin", "Argentins", "Avennes", "A~", "B", "Bachelard", "Barthes", "Bastille", "Belgique", "Bel~", "Besse", "Bixente", "Branly", "Brochet", "CCJ", "CNRS", "CRDT", "Cannes", "Carrisou", "Cavalaire", "Censier", "Chambre", "Champagne", "Champollion", "Champon", "Chancellerie", "Chaplin", "Charlie", "Charlot", "Chavant", "Chroniques", "Ch~", "Claudel", "Clauwaert", "Commerce", "Dati", "Dazs", "Derni\u00e8res", "Diarra", "Diderot", "Dominique", "Dubedout", "D\u00e9p\u00eache", "Eclair", "Edouard", "Emmanu~", "Erikson", "Ethiopie", "Eug\u00e8ne", "Europe", "Facebook", "Famibook", "Faubourg", "Ferran", "Figaro", "Fillon", "Fnac", "France", "Francis", "Fran\u00e7ais", "Fran\u00e7aises", "Fran\u00e7ois", "Gabi", "Gaga", "Gago", "Gallas", "Gambetta", "Gargia", "Gibert", "Gide", "Giesbert", "Gourcuff", "Grande", "Grenette", "Grenoble", "Guti\u00e9rrez", "Gu~", "G\u00e9n\u00e9ral", "Habitat", "Haruki", "Haute", "Heinze", "Henri", "Henry", "Hilton", "Homme", "Honneur", "Hubert", "Hugo", "H\u00e4agen", "I", "Industrie", "Inter", "Internet", "Jaur\u00e8s", "Jean", "Jean-Christophe", "Joffrin", "Journal", "Jules", "K", "Kafka", "Kenya", "Klein", "L", "L'", "La", "Lafayette", "Laurent", "Le", "Les", "Lesdigui\u00e8res", "Libre", "Lib\u00e9ration", "Lionel", "Loisirs", "Lyon", "L\u00e9gion", "MDE", "MacDo", "Maison", "Malraux", "Mandanda", "Maradona", "Marne", "Marsabit", "Marseille", "Mascherano", "Massimo", "Mauriac", "Maxi", "Messi", "Mex\u00e8s", "Midi", "Mitterrand", "Monfreid", "Mougeotte", "Mref", "Mulhouse", "Murakami", "M~", "Nairobi", "Nation", "Nef", "Nicolas", "Nietzsche", "Nord", "Notre-Dame", "Nouvelles", "Occident", "Olkaloo", "Ora~", "PCB", "Palais", "Papa", "Pardigon", "Paris", "Parisien", "Pascale", "Paul", "Peugeot", "Picpus", "Platon", "Premier", "Prisse", "Progr\u00e8s", "Proust", "Provence", "Quatre", "Quentin", "Rachida", "Reims", "Reuilly-Diderot", "Rey", "Rodriguez", "Roger", "Roland", "Rolex", "Royal", "R\u00e9publique", "Saint", "Saint-Germain", "Saint-Jean-de-Maurienne", "Sainte-Claire", "Sarce", "Sarkozy", "Sartre", "Saules", "Seine", "Sembat", "Shoah", "Small", "Smic", "Solf\u00e9rino", "Somalie", "Sorbonne", "Sor~", "Stendhal", "Steve", "Strasbourg", "S\u00e9gol\u00e8ne", "Tarantino", "Thierry", "UMP", "Union", "VIP", "Vallier", "Val\u00e9ry", "Vaucanson", "Victor", "Vict~", "Vincennes", "Voix", "Wittgenstein", "World", "XXX", "YYY", "Yves", "Z", "Zanetti", "Zep", "a", "abominable", "abord", "aborder", "absolument", "absorb\u00e9s", "abstentionnisme", "abstenu", "accepte", "acceptons", "accessible", "accident", "accomplir", "accord", "accorde", "accordent", "accrue", "acc\u00e8s", "acc\u00e9l\u00e8re", "acc\u00e9l\u00e9rer", "acharn\u00e9e", "achats", "achetait", "ach\u00e8tent", "ach\u00e8tes", "ach\u00e8ve", "acquis", "acte", "action", "activit\u00e9", "actualit\u00e9", "actuellement", "admettre", "administration", "adolescent", "adore", "adresser", "adversaire", "affaire", "affam\u00e9e", "affectation", "affirmation", "affirme", "affirmer", "africains", "agenda", "agit", "agr\u00e9able", "ah", "ai", "aide", "aider", "aid\u00e9", "aid\u00e9e", "ailleurs", "aime", "aim\u00e9", "air", "aisthesis", "ait", "albums", "aliments", "allais", "allait", "allant", "allante", "allemand", "aller", "allez", "allions", "all\u00e9e", "alors", "amateurs", "ambiance", "ambigu", "amenait", "amie", "amis", "amnistie", "amour", "am\u00e8ne", "am\u00e9ricain", "an", "anciens", "anecdote", "anglais", "angle", "anglo", "anime", "annexe", "anniversaire", "ann\u00e9e", "ann\u00e9es", "ans", "anti-litt\u00e9rature", "antiquit\u00e9", "aper\u00e7u", "appara\u00eet", "appareillage", "appareils", "apparemment", "appartements", "appartenez", "appartenir", "appartient", "appelait", "appeler", "appelle", "appellerai", "apprendre", "appris", "approche", "appr\u00e9hension", "appr\u00eate", "appuyer", "apr\u00e8s", "arbitre", "argent", "argentin", "argentine", "argentins", "armer", "arrach\u00e9", "arrive", "arrivent", "arriver", "arrives", "arrivez", "arriv\u00e9", "arriv\u00e9e", "arri~", "arri\u00e8re", "arri\u00e8re-grand-m\u00e8re", "arri\u00e8re-plan", "arr\u00eat", "arr\u00eate", "arr\u00eater", "art", "artisans", "artiste", "artistes", "artistique", "aspect", "aspects", "aspirations", "assauts", "assez", "association", "associations", "associer", "assurer", "atmosph\u00e9riquement", "attachement", "attaquants", "attaque", "attarderai", "attendez", "attends", "attention", "attroupe", "au-dessus", "aucune", "auditeurs", "augment\u00e9", "aujourd'hui", "aupr\u00e8s", "aura", "auraient", "aurais", "aurait", "aussi", "aus~", "automatiquement", "automatisme", "automatismes", "autorit\u00e9", "autour", "autre", "autrefois", "autrement", "autres", "autrichien", "au~", "avaient", "avais", "avait", "avanc\u00e9", "avanc\u00e9es", "avant", "avec", "avenir", "aventure", "avenue", "avertissement", "aveugles", "avez", "avoir", "avons", "avoue", "ayant", "ayez", "a~", "baguette", "baguettes", "bah", "balader", "baladeur", "balaye", "ballon", "bande", "banlieue", "banque", "baraquements", "bas\u00e9e", "battus", "beau", "beaucoup", "bel", "belles", "ben", "besoin", "bien", "biens", "bio", "bless\u00e9e", "bleu", "bling", "bois", "bon", "bonne", "bonnes", "bons", "boude", "bougez", "boulanger", "boulevard", "bouleverse", "boulot", "bourgeoise", "bourgeoisie", "bourrasque", "bout", "boutique", "bou\u00e9e", "bo\u00eete", "branch\u00e9", "branch\u00e9e", "branch\u00e9s", "bras", "brasseries", "bref", "brioches", "brouhaha", "brousse", "br\u00fblante", "bulles", "bureau", "bus", "but", "buteur", "b~", "b\u00e2timent", "b\u00e9n\u00e9ficient", "b\u00e9n\u00e9voles", "b\u00e9r\u00e9zina", "c'", "c'est-\u00e0-dire", "cabine", "cadre", "cadres", "caetera", "caf\u00e9s", "camion", "camionnette", "camp", "campagne", "cantonales", "cap", "capable", "capacit\u00e9", "capitales", "capter", "car", "caricature", "carrefour", "carri\u00e8re", "carton", "cartons", "cas", "casser", "cause", "ca~", "ce", "ceci", "cela", "celles", "celui", "cent", "centre", "centre-ville", "cents", "cercle", "cercles", "certain", "certaine", "certainement", "certaines", "certains", "ces", "cet", "cette", "ceux", "chacun", "chacune", "chaleur", "chaleureusement", "chambre", "champ", "chance", "change", "changeant", "changeants", "changement", "changements", "changer", "chang\u00e9", "chaque", "charg\u00e9s", "charni\u00e8re", "chass\u00e9s", "chats", "chaussures", "chef", "chemins", "cher", "cherche", "chercher", "chers", "chez", "chiffres", "choisi", "chose", "choses", "ch~", "ch\u00f4meurs", "ci", "ciment", "cinglant", "cinq", "cinquantaine", "cinquante", "cin\u00e9ma", "circonscription", "circuler", "citer", "citoyens", "civils", "clair", "classe", "clavier", "client\u00e8le", "client\u00e8les", "clonage", "club", "clubbers", "cl\u00e9s", "coalis\u00e9es", "code", "cognitive", "coh\u00e9sion", "coin", "coll\u00e8ges", "com", "combat", "combats", "combien", "commandait", "commanditaire", "comme", "commence", "commencerai", "commences", "commenc\u00e9", "comment", "commen\u00e7ait", "commercial", "commer\u00e7ants", "commettre", "commissaire", "commun", "communautaire", "communautaires", "communaut\u00e9", "communications", "communiquer", "compatriotes", "complexe", "compliqu\u00e9", "compl\u00e8tement", "comporte", "composante", "comprend", "comprendre", "comprends", "compris", "compte", "comp\u00e9n\u00e8trent", "concept", "conception", "concernent", "concitoyens", "concurrence", "conditions", "confiance", "confiant", "conflit", "conf\u00e9rence", "conf\u00e9rences", "conjuguer", "connais", "connaissaient", "connaissance", "connaissent", "connaissez", "connaissiez", "connaissons", "conna\u00eet", "conna\u00eetre", "connue", "conqu\u00eate", "conseillerais", "conseils", "conserve", "consid\u00e9rable", "consid\u00e9rer", "consid\u00e9r\u00e9es", "consiste", "consommateur", "constate", "construire", "construit", "cons\u00e9quent", "contemporain", "contemporains", "continue", "continuer", "continues", "continuez", "continu\u00e9", "conti~", "contourne", "contours", "contraire", "contrat", "contre", "contre-attaques", "contre-litt\u00e9rature", "contrer", "contresens", "contribue", "contribu\u00e9", "contr\u00e9", "contr\u00f4le", "convaincu", "convictions", "convulsions", "con\u00e7ue", "coordination", "corne", "corner", "corps", "correctement", "corrompront", "corromp~", "couleurs", "couloir", "coup", "couples", "coupure", "courant", "courir", "cours", "course", "courses", "court", "courte", "cousins", "couverte", "craignent", "criminels", "crise", "critique", "croire", "crois", "croiser", "crudit\u00e9", "cruellement", "crues", "cr\u00e9ation", "cr\u00e9er", "cuisine", "culture", "culturelle", "curieux", "cyber", "c~", "c\u00e9r\u00e9monies", "c\u00f4t\u00e9", "c\u00f4t\u00e9s", "c\u0153ur", "d'", "d'ailleurs", "d'autant", "dame", "dans", "date", "davantage", "de", "dehors", "demain", "demandant", "demande", "demand\u00e9", "demie", "depuis", "dep~", "dernier", "derniers", "derri\u00e8re", "des", "descend", "descends", "descriptif", "descriptions", "design", "dessin\u00e9e", "dessous", "destruction", "deux", "deuxi\u00e8me", "devant", "devants", "devanture", "devenait", "devenu", "devient", "devra", "devraient", "devrais", "de~", "diagonale", "dictatures", "difficile", "difficiles", "diffuser", "diff\u00e9rence", "diff\u00e9rentes", "diff\u00e9rents", "dignit\u00e9", "dimension", "dimensions", "dirais", "dire", "directe", "direction", "dirigeant", "diriger", "dis", "disaient", "disciple", "disciplin\u00e9", "discours", "dise", "disent", "disiez", "disons", "dispara\u00eetre", "disparu", "dispose", "distinction", "distinctions", "district", "dis~", "dit", "dites", "diverses", "diviser", "dix", "dix-huit", "dix-huiti\u00e8me", "dix-neuf", "dix-neuvi\u00e8me", "dix-septi\u00e8me", "docteur", "docteurs", "doctors", "dois", "doit", "doivent", "domaine", "dominait", "donc", "donne", "donner", "donnerons", "donn\u00e9", "donn\u00e9es", "dont", "dormaient", "dortoir", "doute", "douter", "douze", "droit", "droite", "droites", "droits", "du", "dur", "d~", "d\u00e8s", "d\u00e9bats", "d\u00e9but", "d\u00e9butant", "d\u00e9buts", "d\u00e9b~", "d\u00e9charger", "d\u00e9cha\u00eenement", "d\u00e9chiffrer", "d\u00e9cid\u00e9", "d\u00e9cid\u00e9ment", "d\u00e9cisions", "d\u00e9concentr\u00e9", "d\u00e9coration", "d\u00e9coratives", "d\u00e9cor\u00e9es", "d\u00e9crire", "d\u00e9fendre", "d\u00e9fense", "d\u00e9fensive", "d\u00e9ferlante", "d\u00e9figur\u00e9s", "d\u00e9finir", "d\u00e9finit", "d\u00e9finition", "d\u00e9fricher", "d\u00e9gage", "d\u00e9gagement", "d\u00e9garni", "d\u00e9gradent", "d\u00e9j\u00e0", "d\u00e9late", "d\u00e9licat", "d\u00e9lit", "d\u00e9mocratie", "d\u00e9mocratique", "d\u00e9montrer", "d\u00e9m\u00e9nagements", "d\u00e9nomm\u00e9", "d\u00e9nonce", "d\u00e9part", "d\u00e9pass\u00e9", "d\u00e9pass\u00e9s", "d\u00e9pend", "d\u00e9penses", "d\u00e9placements", "d\u00e9route", "d\u00e9sagr\u00e9gation", "d\u00e9saveu", "d\u00e9sert", "d\u00e9signe", "d\u00e9sir", "d\u00e9sormais", "d\u00e9tente", "d\u00e9truits", "d\u00e9velopp\u00e9e", "d\u00fb", "effectivement", "effet", "efforcerait", "eh", "elle", "elle-m\u00eame", "elles", "embarque", "emb\u00eatant", "emmen\u00e9", "emm\u00e9nagements", "empire", "emploi", "employ\u00e9", "emprise", "emprunte", "en", "encha\u00eene", "encore", "endeuill\u00e9es", "endormies", "endroit", "enfance", "enfant", "enfants", "enfin", "enfuit", "engagent", "enjeu", "ennui", "enseignants", "ensemble", "ensuite", "entendait", "entendre", "enthousiasme", "entraide", "entre", "entreprises", "entrer", "envie", "environ", "environnement", "envoy\u00e9", "erreur", "erreurs", "es", "esprit", "esp\u00e8ce", "esp\u00e9rance", "esp\u00e9rez", "essai", "essais", "essayer", "essentielles", "est", "esth\u00e9tique", "et", "eu", "euh", "eus", "eux", "exactement", "excellent", "exceptionnel", "except\u00e9", "exclamation", "excusez", "exemple", "exercice", "exerc\u00e9", "exigence", "exigences", "existe", "exist\u00e9", "explication", "explications", "explique", "expliquer", "exploser", "exprimer", "exp~", "exp\u00e9die", "exp\u00e9rience", "exp\u00e9rimente", "extraordinaire", "extr\u00eamement", "ex~", "ex\u00e9cutif", "fabrication", "fabrique", "fabriquer", "face", "facile", "faiblesse", "faire", "fais", "faisait", "faisant", "faisiez", "fait", "faites", "fallait", "fallu", "fameux", "familial", "famille", "familles", "fantaisie", "fantastique", "fassiez", "fatalit\u00e9", "faudrait", "fausse", "faut", "faute", "fautes", "fa\u00e7on", "femme", "femmes", "fen\u00eatres", "ferm\u00e9", "ferm\u00e9e", "ferm\u00e9s", "feront", "festival", "feux", "fff", "fid\u00e8le", "fiert\u00e9", "fig\u00e9", "fille", "fils", "fin", "finalement", "financier", "fini", "finissent", "fi\u00e8vre", "flagrant", "flics", "flou", "floue", "flying", "foi", "foire", "fois", "fonci\u00e8rement", "fonctions", "fond", "fondamentale", "font", "fontaine", "force", "forc\u00e9ment", "forme", "former", "formes", "formidable", "fort", "forte", "forts", "for\u00eats", "foss\u00e9", "foule", "fragilit\u00e9", "frais", "franc", "franchira", "franchit", "fran\u00e7ais", "fran\u00e7aise", "fran\u00e7aises", "frappe", "fraternel", "fraternelle", "friandises", "front", "fronti\u00e8re", "fr\u00e9quenter", "fut", "futur", "f~", "f\u00e9minins", "f\u00e9tiches", "gaillard", "galeries", "garantissent", "garantit", "garde", "gardons", "gare", "gar\u00e7on", "gauche", "gazon", "gens", "gifle", "globalement", "goulag", "gouvernement", "go\u00fbt\u00e9", "grand", "grande", "grandes", "grandir", "grands", "grands-parents", "gratuits", "grec", "gros", "gr\u00e8ve", "gr\u00eale", "guerre", "guerres", "guillemets", "g\u00e2teaux", "g\u00e9nie", "g\u00e9n\u00e9ral", "g\u00e9n\u00e9rale", "g\u00e9n\u00e9raliste", "g\u00e9n\u00e9ration", "g\u00e9n\u00e9rations", "g\u00e9n\u00e9raux", "g\u00e9n\u00e9tiques", "g\u00e9ographe", "habiller", "habill\u00e9e", "habit", "habitudes", "halle", "hasard", "haut", "haute", "hein", "heure", "heures", "heureuse", "heureusement", "heureux", "heurte", "heurtent", "hier", "histoire", "histoires", "historique", "historiques", "homme", "hommes", "honneur", "honteux", "horaire", "horaires", "horreur", "huit", "humaine", "humanit\u00e9", "humilit\u00e9", "humour", "h\u00e9donistes", "h\u00e9donistique", "h\u00e9do~", "h\u00e9ritiers", "h\u00e9sitations", "h\u00f4pital", "ici", "identit\u00e9", "id\u00e9e", "il", "ils", "image", "imagine", "immeuble", "immobilier", "imm\u00e9diat", "imm\u00e9diatement", "importance", "important", "importante", "importantes", "importe", "impose", "impression", "imprimantes", "inconscience", "incontournable", "incroyable", "indiqu\u00e9", "ind\u00e9boulonnable", "ind\u00e9pendant", "informaticien", "informatique", "informe", "infos", "initiative", "inquiets", "installent", "installer", "instant", "instants", "instaur\u00e9", "institution", "institutionnel", "institutions", "instruction", "intellectuels", "intenable", "international", "internet", "interpr\u00e9tations", "interroger", "intersection", "intervenir", "intervenu", "int\u00e9ressait", "int\u00e9ressant", "int\u00e9ressants", "int\u00e9ress\u00e9e", "int\u00e9rieur", "int\u00e9rieurs", "int\u00e9r\u00eat", "inventer", "invitation", "invitent", "invit\u00e9e", "irr\u00e9elles", "itin\u00e9raires", "j'", "jalonnent", "jamais", "jardin", "jardins", "je", "jet", "jeu", "jeune", "jeunes", "jeunesse", "jeu~", "jouaient", "joue", "jouer", "joueur", "joueurs", "jouissance", "jour", "journaux", "journ\u00e9e", "jours", "jou\u00e9", "joyeux", "jugement", "jusqu'", "juste", "justement", "justice", "j~", "kilom\u00e8tres", "kiosque", "l'", "l'on", "la", "laboratoire", "laisse", "langage", "langue", "laquelle", "larcin", "large", "largement", "le", "leaders", "leadership", "lecteur", "lecture", "lequel", "les", "leur", "leurs", "le\u00e7on", "libert\u00e9", "libert\u00e9s", "libre", "licenciement", "lieu", "ligne", "lignes", "limites", "lire", "lisais", "lisez", "lit", "litigieuse", "littoral", "litt\u00e9raire", "litt\u00e9ralement", "litt\u00e9rature", "litt\u00e9r~", "livraison", "livre", "livres", "li\u00e9", "li\u00e9e", "li\u00e9es", "li\u00e9s", "local", "location", "logiciels", "loin", "lointain", "loisir", "long", "longe", "longer", "longez", "longtemps", "lorgne", "lorsqu'", "lorsque", "louper", "loyers", "lu", "lui", "lui-m\u00eame", "lus", "lyc\u00e9e", "lyc\u00e9en", "lyc\u00e9es", "l~", "l\u00e0", "l\u00e0-bas", "l\u00e0-dedans", "l\u00e0-dessus", "l\u00e2chent", "l\u00e2cher", "l\u00e2ch\u00e9", "l\u00e8guerons", "l\u00e9g\u00e8ret\u00e9", "m'", "ma", "machin", "machine", "magasin", "magnifique", "main", "maintenance", "maintenant", "maintenan~", "maintenir", "maint~", "maires", "mais", "majorit\u00e9", "mal", "malade", "maladie", "maladive", "malheur", "malheureusement", "mang\u00e9", "manifestations", "manipulations", "mani\u00e8re", "manque", "manqu\u00e9", "man\u00e8ge", "man\u0153uvre", "marchandises", "marche", "march\u00e9", "mari\u00e9e", "marquage", "marque", "marqu\u00e9", "marrant", "masculins", "masques", "match", "matchs", "maternelles", "matin", "mati\u00e8re", "mat\u00e9rielles", "mauvais", "mauvaise", "ma~", "ma\u00eetrisait", "ma\u00eetris\u00e9e", "me", "meilleures", "membres", "men\u00e9e", "merci", "mes", "message", "mesure", "mesures", "mesurons", "mettre", "mh", "mi-temps", "micro-processeurs", "midi", "mien", "mieux", "milieu", "militaires", "mille", "millions", "mine", "ministre", "minute", "minutes", "miraculeux", "mise", "mises", "mobile", "mobilisation", "mobilis\u00e9s", "moderne", "modernit\u00e9", "modifier", "moi", "moins", "moment", "moments", "mon", "monde", "mondiales", "mondialisation", "monsieur", "monter", "montes", "montre", "montrer", "monuments", "morbide", "morceau", "mort", "mortels", "mor~", "mot", "motif", "motivations", "mourir", "mouton", "mouvements", "moyenne", "moyennes", "moyens", "mule", "mulot", "municipales", "musicale", "musique", "mus\u00e9e", "mythe", "m~", "m\u00e8ne", "m\u00e8nent", "m\u00e8tres", "m\u00e8~", "m\u00e9decin", "m\u00e9decine", "m\u00e9decins", "m\u00e9diane", "m\u00e9diateur", "m\u00e9lange", "m\u00e9moire", "m\u00e9tier", "m\u00e9tiers", "m\u00e9tro", "m\u00e9tropole", "m\u00e9t~", "m\u00e9~", "m\u00eale", "m\u00eame", "n'", "nation", "national", "nations", "naturel", "naturellement", "naturels", "naufrage", "na\u00eetre", "na\u00effs", "ne", "neuf", "ni", "niche", "nier", "niveau", "ni~", "noir", "nom", "nombre", "nombreuses", "nombreux", "nomination", "noms", "non", "nord", "normalement", "nos", "notamment", "notion", "notre", "nous", "nouveau", "nouveaux", "nouvel", "nouvelle", "nouvelles", "nuages", "nuanc\u00e9e", "nue", "nul", "num\u00e9rique", "n\u00e9anmoins", "n\u00e9cessaire", "n\u00e9e", "n\u00e9gation", "n\u00e9gociations", "n\u00e9s", "obligatoire", "oblig\u00e9e", "oblig\u00e9s", "obstacles", "obstinent", "obstruction", "obs\u00e8de", "occasion", "occupe", "occup\u00e9es", "offensif", "officiers", "oh", "oiseau", "on", "ont", "oppose", "opposer", "optimiste", "or", "ordinateur", "ordinateurs", "ordre", "ordres", "organiser", "organis\u00e9e", "orientent", "orient\u00e9es", "orient\u00e9s", "oser", "ou", "ouais", "oublie", "oubli\u00e9", "ouest", "ouh", "oui", "outrage", "outre-mer", "ouverte", "ouverture", "ouvrir", "o\u00f9", "page", "pain", "paix", "par", "paraissait", "para\u00eet", "para\u00eetre", "parc", "parce", "pardon", "parents", "parfois", "parisienne", "parlais", "parlant", "parle", "parler", "parlerai", "parlez", "parl\u00e9", "parmi", "part", "partageons", "partager", "partant", "partent", "partez", "parti", "participation", "participer", "particulier", "particuli\u00e8rement", "partie", "partiels", "partir", "partis", "pas", "passage", "passait", "passant", "passa~", "passe", "passent", "passer", "passerelle", "passes", "passez", "passion", "passionnant", "pass\u00e9", "patrimoine", "patron", "pauvre", "pauvret\u00e9", "pays", "peine", "peinture", "penalty", "pendant", "pensais", "pensait", "pensant", "pensante", "pense", "penser", "penseur", "pensez", "pensum", "pens\u00e9e", "pens\u00e9es", "pen~", "people", "peoples", "perdre", "perdu", "performance", "permanence", "permet", "permettent", "personnage", "personnages", "perte", "peser", "petit", "petite", "petites", "petits", "peu", "peuples", "peur", "peut", "peut-\u00eatre", "peut~", "peuvent", "peux", "pff", "philo", "philosophe", "philosophes", "philosophie", "philosophique", "photos", "phrase", "phrases", "ph\u00e9nom\u00e8ne", "pied", "pieds", "piquer", "piscine", "pi\u00e8ge", "place", "places", "plaisaient", "plaisir", "plant\u00e9", "plan\u00e8te", "plateau", "plateaux", "plein", "plong\u00e9", "plupart", "plus", "plusieurs", "plut\u00f4t", "point", "points", "poitrine", "polarisaient", "police", "policier", "policiers", "politique", "politiques", "pompiers", "ponctuel", "ponctuels", "porche", "portes", "pose", "poser", "posez", "possession", "poss\u00e9dait", "poste", "postes", "poteau", "pour", "pourquoi", "pourra", "pourrais", "pourrait", "pourriez", "poursuivez", "poursuivre", "pourtant", "pouss\u00e9", "pouvais", "pouvait", "pouvez", "pouvoir", "po\u00e9sie", "po\u00ef\u00e9sis", "pratiquant", "pratique", "pratiquement", "pratiquez", "pra~", "premier", "premi\u00e8re", "prend", "prendre", "prendront", "prends", "presqu'", "presque", "presse", "preuve", "primaire", "principal", "principalement", "priori", "pris", "prise", "privil\u00e9giait", "privil\u00e9gi\u00e9s", "priv\u00e9e", "prix", "probl\u00e8me", "probl\u00e8mes", "prochainement", "proches", "production", "productivit\u00e9", "produit", "professeurs", "profite", "profiter", "profond\u00e9ment", "programmation", "programme", "programmes", "progr\u00e8s", "projets", "prolonge", "prolongement", "promener", "pronostique", "propos", "proposons", "propos\u00e9s", "propre", "protestation", "province", "pr\u00e8s", "pr\u00e9alable", "pr\u00e9carit\u00e9", "pr\u00e9cieux", "pr\u00e9cipite", "pr\u00e9cise", "pr\u00e9cision", "pr\u00e9cis\u00e9ment", "pr\u00e9c\u00e9dent", "pr\u00e9d\u00e9cesseurs", "pr\u00e9fecture", "pr\u00e9fet", "pr\u00e9gnante", "pr\u00e9liminaires", "pr\u00e9occupent", "pr\u00e9pa", "pr\u00e9sent", "pr\u00e9sentes", "pr\u00e9sident", "pr\u00e9sidentielle", "pr\u00e9vient", "pr\u00e9voir", "pr\u00e9vu", "pu", "public", "publics", "publiques", "pudeur", "pudique", "puis", "puisqu'", "puisque", "puissamment", "puissance", "puisse", "p~", "p\u00e2tisserie", "p\u00e2tissier", "p\u00e8re", "p\u00e8sent", "p\u00e9riph\u00e9riques", "qu'", "quai", "quais", "quand", "quarante", "quarante-huit", "quarante-neuf", "quaranti\u00e8me", "quartier", "quartiers", "quar~", "quatorze", "quatorzi\u00e8me", "quatre", "quatre-vingt-dix-neuf", "quatre-vingt-onze", "quatre-vingt-six", "que", "quel", "quelle", "quelqu'un", "quelque", "quelquefois", "quelques", "question", "qui", "quinze", "quoi", "quoique", "quotidienne", "racont\u00e9", "rails", "raison", "rappelez", "rapport", "rapproche", "rassembl\u00e9e", "ratatin\u00e9", "rattraper", "rayon", "rebondit", "recevoir", "recherche", "recherch\u00e9e", "reconnaissez", "reconna\u00eet", "reconna\u00eetre", "records", "recueil", "reculer", "redis", "reflet", "refus\u00e9es", "regarde", "regarder", "regardez", "rejoindre", "rejoint", "relativement", "religieuse", "religieuses", "relire", "relis", "rel\u00e2chement", "rel\u00e8vement", "remarque", "remercie", "remis", "remontant", "remonte", "remonter", "remontez", "rempla\u00e7ante", "renaissance", "rencontre", "rencontrent", "rencontres", "rencontr\u00e9", "rencontr\u00e9s", "rendez", "rendre", "renoncement", "rentre", "rentrent", "rentrer", "rentres", "rentr\u00e9", "rentr\u00e9e", "rentr\u00e9s", "renverse", "repartie", "repartis", "repensant", "repos", "repousse", "repousser", "reprends", "reprenez", "repris", "repr\u00e9senter", "rep\u00e9rer", "respect", "respecter", "respectueuse", "responsabilit\u00e9", "responsabilit\u00e9s", "responsable", "responsables", "ressemble", "ressentie", "ressentir", "ressentons", "ressort", "restaient", "restant", "reste", "restent", "rest\u00e9e", "retombez", "retour", "retournent", "retourner", "retrait", "retrouve", "retrouver", "revenant", "revenir", "revenu", "revenue", "reviennent", "reviens", "revient", "re\u00e7oit", "rh\u00e9torique", "ricanement", "riche", "ridicule", "rien", "rivage", "romans", "romantique", "rond-point", "rose", "route", "rue", "rues", "rythme", "r\u00e8gle", "r\u00e8gles", "r\u00e9action", "r\u00e9aliser", "r\u00e9cemment", "r\u00e9cents", "r\u00e9ception", "r\u00e9ciproquement", "r\u00e9cup\u00e9rer", "r\u00e9cup\u00e9r\u00e9", "r\u00e9flexion", "r\u00e9forme", "r\u00e9formes", "r\u00e9f\u00e9rence", "r\u00e9gion", "r\u00e9gions", "r\u00e9gl\u00e9", "r\u00e9habiliter", "r\u00e9paration", "r\u00e9pond", "r\u00e9pondre", "r\u00e9ponse", "r\u00e9publicain", "r\u00e9seaux", "r\u00e9serv\u00e9", "r\u00e9sultat", "r\u00e9sumer", "r\u00e9tablir", "r\u00e9ussirons", "r\u00eaver", "r\u00eaveur", "r\u00f4le", "s'", "sa", "sacr\u00e9es", "sais", "sait", "salaires", "sanction", "sanctionn\u00e9e", "sandwich", "sans", "sant\u00e9", "sauf", "saura", "saute", "sauvage", "sauvagement", "sauve", "sauvetage", "savaient", "savez", "savoir", "savons", "sav~", "sa~", "science", "scientifique", "scolaire", "scolarit\u00e9", "scrutin", "sc\u00e8ne", "se", "second", "seconde", "seigneur", "seizi\u00e8me", "selon", "semaines", "semblait", "semblant", "semble", "semblerait", "semblez", "sens", "sensation", "sentiment", "sen~", "sept", "septi\u00e8me", "sera", "serait", "seras", "serez", "serons", "serveur", "service", "services", "ses", "set", "seul", "seule", "seulement", "sexe", "sexualit\u00e9", "se~", "si", "siffl\u00e9", "signale", "signes", "sillonnant", "simple", "simplement", "singulier", "sinon", "site", "sites", "situation", "situe", "situer", "sixi\u00e8me", "si\u00e8cle", "si\u00e8cles", "social", "sociale", "socialiste", "sociaux", "sociologie", "soci\u00e9t\u00e9", "soci\u00e9t\u00e9s", "soi", "soient", "soir", "soit", "soixante-cinq", "soixante-quatre", "soixante-quinze", "sol", "soleil", "solidaire", "solidarit\u00e9", "solidarit\u00e9s", "solide", "solution", "sommes", "son", "sont", "sors", "sort", "sorte", "sorti", "sortie", "sortir", "soucis", "souffrance", "souffrent", "souhaite", "soulignent", "souligner", "souris", "sous", "soutien", "souvenez", "souvenir", "souvenirs", "souvent", "souviens", "sovi\u00e9tique", "spectateur", "spontan\u00e9", "sport", "sp\u00e9cialement", "sp\u00e9cialiste", "sp\u00e9cialis\u00e9", "sp\u00e9cialis\u00e9s", "square", "stade", "stationner", "stations", "statut", "stopp\u00e9", "stressant", "su", "successives", "succ\u00e8s", "sud", "suffit", "suffrage", "suis", "suite", "suivez", "suivi", "suivre", "sujet", "sur", "surface", "surnaturelles", "surtout", "su~", "symbolis\u00e9", "sympathie", "syst\u00e8me", "s~", "s\u00e9curit\u00e9", "s\u00e9duction", "s\u00e9parable", "s\u00e9quence", "s\u00e9rieux", "s\u00fbr", "s\u00fbre", "s\u00fbrement", "tandis", "tant", "tard", "tchater", "techniquement", "tel", "telle", "tellement", "telles", "tels", "temps", "temp\u00eate", "tendance", "tendu", "tendue", "tenir", "tentent", "tenu", "terme", "termine", "terrasses", "terre", "territoriale", "test", "th\u00e9matiques", "th\u00e9oriciens", "th\u00e9orie", "th\u00e9oris\u00e9", "tienne", "tient", "tir", "tire", "tirer", "tissu", "toi", "tol\u00e9rance", "tombe", "tombent", "tomber", "tomb\u00e9e", "tontons", "tornade", "totalement", "totalitaires", "touche", "toucher", "touchons", "touch\u00e9s", "toujours", "tour", "tourisme", "tourments", "tournait", "tourne", "tourner", "tournes", "tournez", "tous", "tout", "toute", "toutes", "tou~", "trace", "traces", "tradition", "trag\u00e9dies", "train", "traiter", "traiteur", "trajet", "tram", "trams", "tranquille", "transform\u00e9", "transporte", "transports", "travail", "travaillais", "travaille", "travailler", "travaillez", "travaill\u00e9", "travaux", "travers", "traverse", "traverser", "traverses", "traversez", "treize", "trente", "trente-deux", "trente-et-un", "trente-neuf", "triomphe", "triste", "trois", "troisi\u00e8me", "tromper", "trop", "trottoir", "trou", "trouve", "trouver", "trouverai", "trouv\u00e9", "truc", "trucs", "tr\u00e8s", "tu", "type", "t~", "t\u00e2che", "t\u00e9l\u00e9phone", "t\u00e9l\u00e9ph\u00e9rique", "t\u00e9l\u00e9vis\u00e9", "t\u00eate", "t\u00f4t", "un", "une", "unie", "uniquement", "univers", "universel", "uns", "usine", "utile", "utilisateur", "utilisateurs", "utilise", "utiliser", "utilises", "utilis\u00e9", "u~", "va", "vacances", "vachement", "vague", "vais", "valeurs", "variations", "varie", "vari\u00e9", "vas", "vaut", "venait", "venez", "venir", "vente", "venue", "verra", "verras", "verrez", "verront", "vers", "version", "vert", "vertueuse", "veulent", "veut", "veux", "victimes", "victoire", "vid\u00e9os", "vie", "vieil", "vieille", "vieillissent", "viennent", "viens", "vient", "vif", "ville", "villes", "vingt", "vingt-cinq", "vingt-deux", "vingt-deuxi\u00e8me", "vingt-et-uni\u00e8me", "vingt-neuf", "vingt-trois", "vingt~", "visiblement", "visualise", "vite", "vitrine", "vitrines", "vivant", "vivante", "vivent", "vivons", "vivre", "voies", "voil\u00e0", "voir", "vois", "voisin", "voisins", "voit", "voiture", "voitures", "vol", "vole", "voler", "volontaire", "volont\u00e9", "vol\u00e9", "vont", "vos", "vote", "votre", "voudrais", "voudrait", "voudrons", "voulais", "voulait", "voulez", "vouloir", "voulu", "vous", "vous-m\u00eame", "voyaient", "voyait", "voyez", "voyons", "vrai", "vraiment", "vu", "vue", "vues", "v~", "v\u00e9cu", "v\u00e9ritable", "v\u00e9rit\u00e9", "y", "yeux", "ziki", "z\u00e9ro", "\u00c0", "\u00c9tat", "\u00c9tienne", "\u00c9toile", "\u00e0", "\u00e2g\u00e9e", "\u00e2me", "\u00e7a", "\u00e7~", "\u00e9bahie", "\u00e9bauche", "\u00e9carte", "\u00e9changer", "\u00e9chapper", "\u00e9cho", "\u00e9choient", "\u00e9clairages", "\u00e9clectique", "\u00e9cole", "\u00e9coles", "\u00e9crasante", "\u00e9crire", "\u00e9cris", "\u00e9crit", "\u00e9crite", "\u00e9criture", "\u00e9crivain", "\u00e9crivains", "\u00e9crivant", "\u00e9crivent", "\u00e9ditorial", "\u00e9ducation", "\u00e9galement", "\u00e9galisation", "\u00e9gards", "\u00e9glise", "\u00e9lan", "\u00e9lecteurs", "\u00e9lectorales", "\u00e9lectronique", "\u00e9loge", "\u00e9lus", "\u00e9l\u00e9ments", "\u00e9minemment", "\u00e9motion", "\u00e9mu", "\u00e9nergiquement", "\u00e9nerv\u00e9", "\u00e9ner~", "\u00e9norme", "\u00e9norm\u00e9ment", "\u00e9poque", "\u00e9poques", "\u00e9pouvantable", "\u00e9pouvantablement", "\u00e9preuve", "\u00e9prouve", "\u00e9prouver", "\u00e9puise", "\u00e9quateur", "\u00e9quipe", "\u00e9taient", "\u00e9tais", "\u00e9tait", "\u00e9tant", "\u00e9thiopien", "\u00e9thique", "\u00e9tiez", "\u00e9tonnement", "\u00e9trange", "\u00e9tranger", "\u00e9trangers", "\u00e9tudes", "\u00e9tudiant", "\u00e9tu~", "\u00e9t~", "\u00e9t\u00e9", "\u00e9videmment", "\u00e9vidence", "\u00e9vident", "\u00e9viter", "\u00e9volution", "\u00e9voqu\u00e9", "\u00e9v\u00e8nements", "\u00e9~", "\u00eates", "\u00eatre", "\u00eele", "\u0153uvre", "\u0153uvres", "\u2026"], "word_dropout": 0.5}
|
model/weights.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5dbece0dcb3522f0cce9de74d3847d9b1d9e6f8b4f4951892b62400a2450232
|
3 |
+
size 1739319276
|
train.log
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[hops] 2024-09-23 16:26:02.103 | INFO | Initializing a parser from /workspace/configs/exp_camembertv2/camembertav2_base_p2_17k_last_layer.yaml
|
2 |
+
[hops] 2024-09-23 16:26:02.119 | INFO | Generating a FastText model from the treebank
|
3 |
+
[hops] 2024-09-23 16:26:02.124 | INFO | Training fasttext model
|
4 |
+
[hops] 2024-09-23 16:26:07.221 | INFO | Start training on cuda:0
|
5 |
+
[hops] 2024-09-23 16:26:07.224 | WARNING | You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
6 |
+
[hops] 2024-09-23 16:26:17.032 | INFO | Epoch 0: train loss 3.0198 dev loss 2.5813 dev tag acc 06.78% dev head acc 24.04% dev deprel acc 34.03%
|
7 |
+
[hops] 2024-09-23 16:26:17.033 | INFO | New best model: head accuracy 24.04% > 0.00%
|
8 |
+
[hops] 2024-09-23 16:26:28.781 | INFO | Epoch 1: train loss 2.3534 dev loss 1.8865 dev tag acc 16.02% dev head acc 34.55% dev deprel acc 58.81%
|
9 |
+
[hops] 2024-09-23 16:26:28.782 | INFO | New best model: head accuracy 34.55% > 24.04%
|
10 |
+
[hops] 2024-09-23 16:26:41.177 | INFO | Epoch 2: train loss 1.8324 dev loss 1.4990 dev tag acc 33.81% dev head acc 51.15% dev deprel acc 68.77%
|
11 |
+
[hops] 2024-09-23 16:26:41.178 | INFO | New best model: head accuracy 51.15% > 34.55%
|
12 |
+
[hops] 2024-09-23 16:26:53.654 | INFO | Epoch 3: train loss 1.4805 dev loss 1.2183 dev tag acc 60.65% dev head acc 64.19% dev deprel acc 77.73%
|
13 |
+
[hops] 2024-09-23 16:26:53.655 | INFO | New best model: head accuracy 64.19% > 51.15%
|
14 |
+
[hops] 2024-09-23 16:27:05.915 | INFO | Epoch 4: train loss 1.2220 dev loss 1.0230 dev tag acc 64.64% dev head acc 70.79% dev deprel acc 81.67%
|
15 |
+
[hops] 2024-09-23 16:27:05.916 | INFO | New best model: head accuracy 70.79% > 64.19%
|
16 |
+
[hops] 2024-09-23 16:27:18.205 | INFO | Epoch 5: train loss 1.0437 dev loss 0.9197 dev tag acc 71.84% dev head acc 73.47% dev deprel acc 83.84%
|
17 |
+
[hops] 2024-09-23 16:27:18.206 | INFO | New best model: head accuracy 73.47% > 70.79%
|
18 |
+
[hops] 2024-09-23 16:27:30.479 | INFO | Epoch 6: train loss 0.9163 dev loss 0.8243 dev tag acc 76.67% dev head acc 76.32% dev deprel acc 85.66%
|
19 |
+
[hops] 2024-09-23 16:27:30.480 | INFO | New best model: head accuracy 76.32% > 73.47%
|
20 |
+
[hops] 2024-09-23 16:27:43.020 | INFO | Epoch 7: train loss 0.8055 dev loss 0.7605 dev tag acc 77.97% dev head acc 77.86% dev deprel acc 86.18%
|
21 |
+
[hops] 2024-09-23 16:27:43.021 | INFO | New best model: head accuracy 77.86% > 76.32%
|
22 |
+
[hops] 2024-09-23 16:27:55.200 | INFO | Epoch 8: train loss 0.7197 dev loss 0.6791 dev tag acc 80.11% dev head acc 80.47% dev deprel acc 87.75%
|
23 |
+
[hops] 2024-09-23 16:27:55.201 | INFO | New best model: head accuracy 80.47% > 77.86%
|
24 |
+
[hops] 2024-09-23 16:28:07.158 | INFO | Epoch 9: train loss 0.6403 dev loss 0.6609 dev tag acc 82.00% dev head acc 81.19% dev deprel acc 88.10%
|
25 |
+
[hops] 2024-09-23 16:28:07.159 | INFO | New best model: head accuracy 81.19% > 80.47%
|
26 |
+
[hops] 2024-09-23 16:28:20.202 | INFO | Epoch 10: train loss 0.5750 dev loss 0.6266 dev tag acc 86.48% dev head acc 81.53% dev deprel acc 88.46%
|
27 |
+
[hops] 2024-09-23 16:28:20.203 | INFO | New best model: head accuracy 81.53% > 81.19%
|
28 |
+
[hops] 2024-09-23 16:28:32.873 | INFO | Epoch 11: train loss 0.5237 dev loss 0.5865 dev tag acc 88.83% dev head acc 82.58% dev deprel acc 88.99%
|
29 |
+
[hops] 2024-09-23 16:28:32.874 | INFO | New best model: head accuracy 82.58% > 81.53%
|
30 |
+
[hops] 2024-09-23 16:28:44.747 | INFO | Epoch 12: train loss 0.4711 dev loss 0.6140 dev tag acc 91.18% dev head acc 83.19% dev deprel acc 88.91%
|
31 |
+
[hops] 2024-09-23 16:28:44.748 | INFO | New best model: head accuracy 83.19% > 82.58%
|
32 |
+
[hops] 2024-09-23 16:28:57.334 | INFO | Epoch 13: train loss 0.4285 dev loss 0.5683 dev tag acc 92.55% dev head acc 83.75% dev deprel acc 89.79%
|
33 |
+
[hops] 2024-09-23 16:28:57.335 | INFO | New best model: head accuracy 83.75% > 83.19%
|
34 |
+
[hops] 2024-09-23 16:29:09.635 | INFO | Epoch 14: train loss 0.3936 dev loss 0.5409 dev tag acc 93.76% dev head acc 84.73% dev deprel acc 90.03%
|
35 |
+
[hops] 2024-09-23 16:29:09.636 | INFO | New best model: head accuracy 84.73% > 83.75%
|
36 |
+
[hops] 2024-09-23 16:29:21.930 | INFO | Epoch 15: train loss 0.3572 dev loss 0.5503 dev tag acc 94.38% dev head acc 84.95% dev deprel acc 89.94%
|
37 |
+
[hops] 2024-09-23 16:29:21.931 | INFO | New best model: head accuracy 84.95% > 84.73%
|
38 |
+
[hops] 2024-09-23 16:29:34.223 | INFO | Epoch 16: train loss 0.3330 dev loss 0.5319 dev tag acc 95.01% dev head acc 85.68% dev deprel acc 90.38%
|
39 |
+
[hops] 2024-09-23 16:29:34.224 | INFO | New best model: head accuracy 85.68% > 84.95%
|
40 |
+
[hops] 2024-09-23 16:29:46.529 | INFO | Epoch 17: train loss 0.3041 dev loss 0.5143 dev tag acc 95.49% dev head acc 85.63% dev deprel acc 90.86%
|
41 |
+
[hops] 2024-09-23 16:29:56.855 | INFO | Epoch 18: train loss 0.2777 dev loss 0.5152 dev tag acc 95.62% dev head acc 86.44% dev deprel acc 90.64%
|
42 |
+
[hops] 2024-09-23 16:29:56.856 | INFO | New best model: head accuracy 86.44% > 85.68%
|
43 |
+
[hops] 2024-09-23 16:30:09.439 | INFO | Epoch 19: train loss 0.2620 dev loss 0.5347 dev tag acc 96.02% dev head acc 86.35% dev deprel acc 90.86%
|
44 |
+
[hops] 2024-09-23 16:30:20.466 | INFO | Epoch 20: train loss 0.2412 dev loss 0.5382 dev tag acc 96.25% dev head acc 86.75% dev deprel acc 91.09%
|
45 |
+
[hops] 2024-09-23 16:30:20.467 | INFO | New best model: head accuracy 86.75% > 86.44%
|
46 |
+
[hops] 2024-09-23 16:30:32.804 | INFO | Epoch 21: train loss 0.2277 dev loss 0.5043 dev tag acc 96.67% dev head acc 87.73% dev deprel acc 91.17%
|
47 |
+
[hops] 2024-09-23 16:30:32.805 | INFO | New best model: head accuracy 87.73% > 86.75%
|
48 |
+
[hops] 2024-09-23 16:30:45.266 | INFO | Epoch 22: train loss 0.2125 dev loss 0.5428 dev tag acc 96.52% dev head acc 87.02% dev deprel acc 91.30%
|
49 |
+
[hops] 2024-09-23 16:30:55.802 | INFO | Epoch 23: train loss 0.1977 dev loss 0.5209 dev tag acc 96.56% dev head acc 87.84% dev deprel acc 91.54%
|
50 |
+
[hops] 2024-09-23 16:30:55.803 | INFO | New best model: head accuracy 87.84% > 87.73%
|
51 |
+
[hops] 2024-09-23 16:31:08.582 | INFO | Epoch 24: train loss 0.1878 dev loss 0.5292 dev tag acc 96.89% dev head acc 87.50% dev deprel acc 91.75%
|
52 |
+
[hops] 2024-09-23 16:31:19.329 | INFO | Epoch 25: train loss 0.1775 dev loss 0.5573 dev tag acc 96.98% dev head acc 87.34% dev deprel acc 91.44%
|
53 |
+
[hops] 2024-09-23 16:31:30.072 | INFO | Epoch 26: train loss 0.1669 dev loss 0.5689 dev tag acc 97.13% dev head acc 87.85% dev deprel acc 91.70%
|
54 |
+
[hops] 2024-09-23 16:31:30.073 | INFO | New best model: head accuracy 87.85% > 87.84%
|
55 |
+
[hops] 2024-09-23 16:31:42.885 | INFO | Epoch 27: train loss 0.1614 dev loss 0.5304 dev tag acc 97.27% dev head acc 87.78% dev deprel acc 91.76%
|
56 |
+
[hops] 2024-09-23 16:31:53.373 | INFO | Epoch 28: train loss 0.1495 dev loss 0.5681 dev tag acc 97.40% dev head acc 88.12% dev deprel acc 92.03%
|
57 |
+
[hops] 2024-09-23 16:31:53.374 | INFO | New best model: head accuracy 88.12% > 87.85%
|
58 |
+
[hops] 2024-09-23 16:32:05.726 | INFO | Epoch 29: train loss 0.1408 dev loss 0.5820 dev tag acc 97.37% dev head acc 88.11% dev deprel acc 92.01%
|
59 |
+
[hops] 2024-09-23 16:32:16.250 | INFO | Epoch 30: train loss 0.1351 dev loss 0.5901 dev tag acc 97.46% dev head acc 88.22% dev deprel acc 92.02%
|
60 |
+
[hops] 2024-09-23 16:32:16.251 | INFO | New best model: head accuracy 88.22% > 88.12%
|
61 |
+
[hops] 2024-09-23 16:32:28.631 | INFO | Epoch 31: train loss 0.1305 dev loss 0.5919 dev tag acc 97.71% dev head acc 88.00% dev deprel acc 92.13%
|
62 |
+
[hops] 2024-09-23 16:32:39.222 | INFO | Epoch 32: train loss 0.1231 dev loss 0.5793 dev tag acc 97.65% dev head acc 88.31% dev deprel acc 92.27%
|
63 |
+
[hops] 2024-09-23 16:32:39.223 | INFO | New best model: head accuracy 88.31% > 88.22%
|
64 |
+
[hops] 2024-09-23 16:32:52.026 | INFO | Epoch 33: train loss 0.1161 dev loss 0.6157 dev tag acc 97.72% dev head acc 88.26% dev deprel acc 92.19%
|
65 |
+
[hops] 2024-09-23 16:33:02.318 | INFO | Epoch 34: train loss 0.1129 dev loss 0.6230 dev tag acc 97.86% dev head acc 88.45% dev deprel acc 92.34%
|
66 |
+
[hops] 2024-09-23 16:33:02.319 | INFO | New best model: head accuracy 88.45% > 88.31%
|
67 |
+
[hops] 2024-09-23 16:33:13.887 | INFO | Epoch 35: train loss 0.1054 dev loss 0.6268 dev tag acc 97.96% dev head acc 88.53% dev deprel acc 92.52%
|
68 |
+
[hops] 2024-09-23 16:33:13.888 | INFO | New best model: head accuracy 88.53% > 88.45%
|
69 |
+
[hops] 2024-09-23 16:33:25.702 | INFO | Epoch 36: train loss 0.1031 dev loss 0.6226 dev tag acc 97.94% dev head acc 88.38% dev deprel acc 92.19%
|
70 |
+
[hops] 2024-09-23 16:33:35.604 | INFO | Epoch 37: train loss 0.0954 dev loss 0.6804 dev tag acc 98.04% dev head acc 88.48% dev deprel acc 92.06%
|
71 |
+
[hops] 2024-09-23 16:33:45.642 | INFO | Epoch 38: train loss 0.0938 dev loss 0.6665 dev tag acc 98.14% dev head acc 88.63% dev deprel acc 92.31%
|
72 |
+
[hops] 2024-09-23 16:33:45.642 | INFO | New best model: head accuracy 88.63% > 88.53%
|
73 |
+
[hops] 2024-09-23 16:33:57.304 | INFO | Epoch 39: train loss 0.0914 dev loss 0.6795 dev tag acc 98.18% dev head acc 88.77% dev deprel acc 92.27%
|
74 |
+
[hops] 2024-09-23 16:33:57.306 | INFO | New best model: head accuracy 88.77% > 88.63%
|
75 |
+
[hops] 2024-09-23 16:34:08.777 | INFO | Epoch 40: train loss 0.0891 dev loss 0.6621 dev tag acc 98.14% dev head acc 88.71% dev deprel acc 92.48%
|
76 |
+
[hops] 2024-09-23 16:34:18.811 | INFO | Epoch 41: train loss 0.0813 dev loss 0.6896 dev tag acc 98.19% dev head acc 88.63% dev deprel acc 92.56%
|
77 |
+
[hops] 2024-09-23 16:34:29.749 | INFO | Epoch 42: train loss 0.0778 dev loss 0.6912 dev tag acc 98.19% dev head acc 88.61% dev deprel acc 92.53%
|
78 |
+
[hops] 2024-09-23 16:34:40.303 | INFO | Epoch 43: train loss 0.0752 dev loss 0.7193 dev tag acc 98.22% dev head acc 88.63% dev deprel acc 92.56%
|
79 |
+
[hops] 2024-09-23 16:34:50.784 | INFO | Epoch 44: train loss 0.0743 dev loss 0.7266 dev tag acc 98.16% dev head acc 88.99% dev deprel acc 92.50%
|
80 |
+
[hops] 2024-09-23 16:34:50.785 | INFO | New best model: head accuracy 88.99% > 88.77%
|
81 |
+
[hops] 2024-09-23 16:35:03.591 | INFO | Epoch 45: train loss 0.0730 dev loss 0.6925 dev tag acc 98.30% dev head acc 88.74% dev deprel acc 92.57%
|
82 |
+
[hops] 2024-09-23 16:35:14.168 | INFO | Epoch 46: train loss 0.0682 dev loss 0.7621 dev tag acc 98.23% dev head acc 88.75% dev deprel acc 92.34%
|
83 |
+
[hops] 2024-09-23 16:35:25.058 | INFO | Epoch 47: train loss 0.0670 dev loss 0.7358 dev tag acc 98.25% dev head acc 88.82% dev deprel acc 92.38%
|
84 |
+
[hops] 2024-09-23 16:35:35.506 | INFO | Epoch 48: train loss 0.0646 dev loss 0.7508 dev tag acc 98.24% dev head acc 89.01% dev deprel acc 92.52%
|
85 |
+
[hops] 2024-09-23 16:35:35.507 | INFO | New best model: head accuracy 89.01% > 88.99%
|
86 |
+
[hops] 2024-09-23 16:35:47.820 | INFO | Epoch 49: train loss 0.0637 dev loss 0.7604 dev tag acc 98.21% dev head acc 88.84% dev deprel acc 92.43%
|
87 |
+
[hops] 2024-09-23 16:35:58.797 | INFO | Epoch 50: train loss 0.0592 dev loss 0.7639 dev tag acc 98.24% dev head acc 88.98% dev deprel acc 92.48%
|
88 |
+
[hops] 2024-09-23 16:36:09.269 | INFO | Epoch 51: train loss 0.0593 dev loss 0.7748 dev tag acc 98.24% dev head acc 88.94% dev deprel acc 92.60%
|
89 |
+
[hops] 2024-09-23 16:36:19.876 | INFO | Epoch 52: train loss 0.0576 dev loss 0.7841 dev tag acc 98.29% dev head acc 89.05% dev deprel acc 92.40%
|
90 |
+
[hops] 2024-09-23 16:36:19.877 | INFO | New best model: head accuracy 89.05% > 89.01%
|
91 |
+
[hops] 2024-09-23 16:36:31.352 | INFO | Epoch 53: train loss 0.0571 dev loss 0.7784 dev tag acc 98.22% dev head acc 89.02% dev deprel acc 92.46%
|
92 |
+
[hops] 2024-09-23 16:36:40.930 | INFO | Epoch 54: train loss 0.0562 dev loss 0.7698 dev tag acc 98.24% dev head acc 89.15% dev deprel acc 92.45%
|
93 |
+
[hops] 2024-09-23 16:36:40.931 | INFO | New best model: head accuracy 89.15% > 89.05%
|
94 |
+
[hops] 2024-09-23 16:36:52.477 | INFO | Epoch 55: train loss 0.0532 dev loss 0.7898 dev tag acc 98.29% dev head acc 89.14% dev deprel acc 92.60%
|
95 |
+
[hops] 2024-09-23 16:37:02.354 | INFO | Epoch 56: train loss 0.0546 dev loss 0.7842 dev tag acc 98.27% dev head acc 89.13% dev deprel acc 92.63%
|
96 |
+
[hops] 2024-09-23 16:37:12.220 | INFO | Epoch 57: train loss 0.0498 dev loss 0.7922 dev tag acc 98.30% dev head acc 89.13% dev deprel acc 92.56%
|
97 |
+
[hops] 2024-09-23 16:37:21.987 | INFO | Epoch 58: train loss 0.0488 dev loss 0.8101 dev tag acc 98.30% dev head acc 89.10% dev deprel acc 92.62%
|
98 |
+
[hops] 2024-09-23 16:37:31.749 | INFO | Epoch 59: train loss 0.0507 dev loss 0.8213 dev tag acc 98.30% dev head acc 89.12% dev deprel acc 92.61%
|
99 |
+
[hops] 2024-09-23 16:37:41.569 | INFO | Epoch 60: train loss 0.0483 dev loss 0.8216 dev tag acc 98.32% dev head acc 89.05% dev deprel acc 92.66%
|
100 |
+
[hops] 2024-09-23 16:37:51.421 | INFO | Epoch 61: train loss 0.0488 dev loss 0.8189 dev tag acc 98.33% dev head acc 89.11% dev deprel acc 92.65%
|
101 |
+
[hops] 2024-09-23 16:38:01.038 | INFO | Epoch 62: train loss 0.0461 dev loss 0.8247 dev tag acc 98.32% dev head acc 89.09% dev deprel acc 92.65%
|
102 |
+
[hops] 2024-09-23 16:38:11.711 | INFO | Epoch 63: train loss 0.0449 dev loss 0.8253 dev tag acc 98.33% dev head acc 89.06% dev deprel acc 92.62%
|
103 |
+
[hops] 2024-09-23 16:38:15.869 | WARNING | You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
104 |
+
[hops] 2024-09-23 16:38:22.277 | WARNING | You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
105 |
+
[hops] 2024-09-23 16:38:24.822 | INFO | Metrics for Rhapsodie-camembertav2_base_p2_17k_last_layer+rand_seed=25
|
106 |
+
───────────────────────────────
|
107 |
+
Split UPOS UAS LAS
|
108 |
+
───────────────────────────────
|
109 |
+
Dev 98.24 89.24 85.62
|
110 |
+
Test 97.77 88.66 84.56
|
111 |
+
───────────────────────────────
|
112 |
+
|