aps6992 commited on
Commit
2923c11
1 Parent(s): cf98d69

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +151 -6
README.md CHANGED
@@ -30,14 +30,159 @@ model = AutoAdapterModel.from_pretrained("allenai/specter_plus_plus")
30
  adapter_name = model.load_adapter("allenai/spp_adhoc_query", source="hf", set_active=True)
31
  ```
32
 
33
- ## Architecture & Training
34
 
35
- <!-- Add some description here -->
36
 
37
- ## Evaluation results
 
38
 
39
- <!-- Add some description here -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
- ## Citation
42
 
43
- <!-- Add some description here -->
 
30
  adapter_name = model.load_adapter("allenai/spp_adhoc_query", source="hf", set_active=True)
31
  ```
32
 
33
+ ## SPECTER 2.0
34
 
35
+ <!-- Provide a quick summary of what the model is/does. -->
36
 
37
+ SPECTER 2.0 is the successor to [SPECTER](allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/spp).
38
+ Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
39
 
40
+ # Model Details
41
+
42
+ ## Model Description
43
+
44
+ SPECTER 2.0 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
45
+ Post that it is trained on all the [SciRepEval](https://huggingface.co/datasets/allenai/scirepeval) training tasks, with task format specific adapters.
46
+
47
+ Task Formats trained on:
48
+ - Classification
49
+ - Regression
50
+ - Proximity
51
+ - Adhoc Search
52
+
53
+ This is the adhoc search query specific adapter. For tasks where papers have to retrieved for a short textual query, use this adapter to encode the query and [allenai/spp_proximity](https://huggingface.co/allenai/spp_adhoc_proximity)
54
+
55
+
56
+ It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.
57
+
58
+
59
+
60
+ - **Developed by:** Amanpreet Singh, Mike D'Arcy, Arman Cohan, Doug Downey, Sergey Feldman
61
+ - **Shared by :** Allen AI
62
+ - **Model type:** bert-base-uncased + adapters
63
+ - **License:** Apache 2.0
64
+ - **Finetuned from model [optional]:** [allenai/scibert](https://huggingface.co/allenai/scibert_scivocab_uncased).
65
+
66
+ ## Model Sources [optional]
67
+
68
+ <!-- Provide the basic links for the model. -->
69
+
70
+ - **Repository:** [https://github.com/allenai/SPECTER2_0] (https://github.com/allenai/SPECTER2_0)
71
+ - **Paper [optional]:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
72
+ - **Demo [optional]:** [Usage] (https://github.com/allenai/SPECTER2_0/blob/main/README.md)
73
+
74
+ # Uses
75
+
76
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
77
+
78
+ ## Direct Use
79
+
80
+ |Model|Type|Name and HF link|
81
+ |--|--|--|
82
+ |Base|Transformer|[allenai/specter_plus_plus](https://huggingface.co/allenai/specter_plus_plus)|
83
+ |Classification|Adapter|[allenai/spp_classification](https://huggingface.co/allenai/spp_classification)|
84
+ |Regression|Adapter|[allenai/spp_regression](https://huggingface.co/allenai/spp_regression)|
85
+ |Retrieval|Adapter|[allenai/spp_proximity](https://huggingface.co/allenai/spp_proximity)|
86
+ |Adhoc Query|Adapter|[allenai/spp_adhoc_query](https://huggingface.co/allenai/spp_adhoc_query)|
87
+
88
+ ```python
89
+ from transformers import AutoTokenizer, AutoModel
90
+
91
+ # load model and tokenizer
92
+ tokenizer = AutoTokenizer.from_pretrained('allenai/specter_plus_plus')
93
+
94
+ #load base model
95
+ model = AutoModel.from_pretrained('allenai/specter_plus_plus')
96
+
97
+ #load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
98
+ model.load_adapter("allenai/spp_adhoc_query", source="hf", load_as="spp_adhoc_query", set_active=True)
99
+
100
+ papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
101
+ {'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
102
+
103
+ # concatenate title and abstract
104
+ text_batch = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
105
+ # preprocess the input
106
+ inputs = self.tokenizer(text_batch, padding=True, truncation=True,
107
+ return_tensors="pt", return_token_type_ids=False, max_length=512)
108
+ output = model(**inputs)
109
+ # take the first token in the batch as the embedding
110
+ embeddings = output.last_hidden_state[:, 0, :]
111
+ ```
112
+
113
+ ## Downstream Use [optional]
114
+
115
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
116
+
117
+ For evaluation and downstream usage, please refer to [https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md](https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md).
118
+
119
+ # Training Details
120
+
121
+ ## Training Data
122
+
123
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
124
+
125
+ The base model is trained on citation links between papers and the adapters are trained on 8 large scale tasks across the four formats.
126
+ All the data is a part of SciRepEval benchmark and is available [here](https://huggingface.co/datasets/allenai/scirepeval).
127
+
128
+ The citation link are triplets in the form
129
+
130
+ ```json
131
+ {"query": {"title": ..., "abstract": ...}, "pos": {"title": ..., "abstract": ...}, "neg": {"title": ..., "abstract": ...}}
132
+ ```
133
+
134
+ consisting of a query paper, a positive citation and a negative which can be from the same/different field of study as the query or citation of a citation.
135
+
136
+ ## Training Procedure
137
+
138
+ Please refer to the [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677).
139
+
140
+
141
+ ### Training Hyperparameters
142
+
143
+
144
+ The model is trained in two stages using [SciRepEval](https://github.com/allenai/scirepeval/blob/main/training/TRAINING.md):
145
+ - Base Model: First a base model is trained on the above citation triplets.
146
+ ``` batch size = 1024, max input length = 512, learning rate = 2e-5, epochs = 2 warmup steps = 10% fp16```
147
+ - Adapters: Thereafter, task format specific adapters are trained on the SciRepEval training tasks, where 600K triplets are sampled from above and added to the training data as well.
148
+ ``` batch size = 256, max input length = 512, learning rate = 1e-4, epochs = 6 warmup = 1000 steps fp16```
149
+
150
+
151
+ # Evaluation
152
+
153
+ We evaluate the model on [SciRepEval](https://github.com/allenai/scirepeval), a large scale eval benchmark for scientific embedding tasks which which has [SciDocs] as a subset.
154
+ We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedic/mdcr), a large scale citation recommendation benchmark.
155
+
156
+ |Model|SciRepEval In-Train|SciRepEval Out-of-Train|SciRepEval Avg|MDCR(MAP, Recall@5)|
157
+ |--|--|--|--|--|
158
+ |[BM-25](https://api.semanticscholar.org/CorpusID:252199740)|n/a|n/a|n/a|(33.7, 28.5)|
159
+ |[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
160
+ |[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
161
+ |[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
162
+ |[SPECTER 2.0-base](https://huggingface.co/allenai/specter_plus_plus)|56.3|58.0|69.2|(38.0, 32.4)|
163
+ |[SPECTER 2.0-Adapters](https://huggingface.co/models?search=allen/spp)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|
164
+
165
+ Please cite the following works if you end up using SPECTER 2.0:
166
+
167
+ [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677):
168
+
169
+ ```bibtex
170
+ @inproceedings{specter2020cohan,
171
+ title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}},
172
+ author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
173
+ booktitle={ACL},
174
+ year={2020}
175
+ }
176
+ ```
177
+ [SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
178
+ ```bibtex
179
+ @article{Singh2022SciRepEvalAM,
180
+ title={SciRepEval: A Multi-Format Benchmark for Scientific Document Representations},
181
+ author={Amanpreet Singh and Mike D'Arcy and Arman Cohan and Doug Downey and Sergey Feldman},
182
+ journal={ArXiv},
183
+ year={2022},
184
+ volume={abs/2211.13308}
185
+ }
186
+ ```
187
 
 
188