Safetensors
English
llama
hamishivi commited on
Commit
157a1a0
1 Parent(s): 10a0925

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: llama-3.1-tulu-2-70b-uf-mean-rm
4
+ results: []
5
+ datasets:
6
+ - allenai/tulu-2.5-preference-data
7
+ - allenai/tulu-v2-sft-mixture
8
+ language:
9
+ - en
10
+ base_model: allenai/llama-3.1-tulu-2-70b
11
+ license: apache-2.0
12
+ ---
13
+ <center>
14
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/>
15
+ </center>
16
+
17
+ # Model Card for Llama 3.1 Tulu V2 70B RM - UltraFeedback
18
+
19
+ Tulu is a series of language models that are trained to act as helpful assistants.
20
+ This is a 70B reward model used for PPO training trained on the UltraFeedback dataset.
21
+
22
+ For more details, read the paper:
23
+ [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).
24
+
25
+ Note this model is finetuned from Llama 3.1, released under the Meta Llama 3.1 community license, included here under `llama_3_license.txt`.
26
+
27
+
28
+ ## Performance
29
+
30
+ We evaluate the model on [RewardBench](https://github.com/allenai/reward-bench):
31
+
32
+ | Model | Score | Chat | Chat Hard | Safety | Reasoning |
33
+ |------------------|-------|-------|-----------|--------|-----------|
34
+ | [Llama 3.1 Tulu 2 8b UF RM](https://huggingface.co/allenai/llama-3.1-tulu-2-8b-uf-mean-rm) | 73.3 | 98.0 | 59.6 | 60.6 | 74.7 |
35
+ | **[Llama 3.1 Tulu 2 70b UF RM](https://huggingface.co/allenai/llama-3.1-tulu-2-70b-uf-mean-rm) (this model)** | | | | | |
36
+
37
+
38
+ ## Model description
39
+
40
+ - **Model type:** A reward model trained on UltraFeedback, designed to be used in RLHF training.
41
+ - **Language(s) (NLP):** English
42
+ - **License:** Apache 2.0.
43
+ - **Finetuned from model:** [allenai/llama-3.1-tulu-2-70b](https://huggingface.co/allenai/llama-3.1-tulu-2-70b)
44
+
45
+ ### Model Sources
46
+
47
+ - **Repository:** https://github.com/allenai/open-instruct
48
+ - **Dataset:** Data used to train this model can be found [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split.
49
+
50
+
51
+ ## Input Format
52
+
53
+ The model is trained to use the following format (note the newlines):
54
+ ```
55
+ <|user|>
56
+ Your message here!
57
+ <|assistant|>
58
+ ```
59
+
60
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
61
+ We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template.
62
+
63
+ ## Intended uses & limitations
64
+
65
+ The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
66
+ We then further trained the model with a [Jax RM trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_rm.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above.
67
+ This model is meant as a research artefact.
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during RM training:
72
+ - learning_rate: 5e-06
73
+ - total_train_batch_size: 64
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear cooldown to 0.
76
+ - lr_scheduler_warmup_ratio: 0.03
77
+ - num_epochs: 1.0
78
+
79
+ ## Citation
80
+
81
+ If you find Tulu 2.5 is useful in your work, please cite it with:
82
+
83
+ ```
84
+ @misc{ivison2024unpacking,
85
+ title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
86
+ author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
87
+ year={2024},
88
+ eprint={2406.09279},
89
+ archivePrefix={arXiv},
90
+ primaryClass={cs.CL}
91
+ }
92
+ ```