|
|
""" |
|
|
Processor class for Molmo2. |
|
|
""" |
|
|
from typing import Optional, Union |
|
|
import dataclasses |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from transformers.image_utils import ImageInput |
|
|
from transformers.video_utils import VideoInput |
|
|
from transformers.processing_utils import ( |
|
|
Unpack, |
|
|
ProcessingKwargs, |
|
|
ProcessorMixin, |
|
|
) |
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
|
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput |
|
|
from transformers.utils import logging |
|
|
|
|
|
from transformers import AutoTokenizer |
|
|
from .image_processing_molmo2 import Molmo2ImagesKwargs, Molmo2ImageProcessor |
|
|
from .video_processing_molmo2 import Molmo2VideoProcessorKwargs, Molmo2VideoProcessor |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
IMAGE_PATCH_TOKEN = f"<im_patch>" |
|
|
IMAGE_LOW_RES_TOKEN = f"<im_low>" |
|
|
IM_START_TOKEN = f"<im_start>" |
|
|
LOW_RES_IMAGE_START_TOKEN = f"<low_res_im_start>" |
|
|
FRAME_START_TOKEN = f"<frame_start>" |
|
|
IM_END_TOKEN = f"<im_end>" |
|
|
FRAME_END_TOKEN= f"<frame_end>" |
|
|
IM_COL_TOKEN = f"<im_col>" |
|
|
IMAGE_PROMPT = "<|image|>" |
|
|
VIDEO_PROMPT = "<|video|>" |
|
|
|
|
|
IMAGE_TOKENS = [ |
|
|
IMAGE_PATCH_TOKEN, |
|
|
IM_COL_TOKEN, |
|
|
IM_START_TOKEN, |
|
|
LOW_RES_IMAGE_START_TOKEN, |
|
|
FRAME_START_TOKEN, |
|
|
IM_END_TOKEN, |
|
|
FRAME_END_TOKEN, |
|
|
IMAGE_LOW_RES_TOKEN, |
|
|
] |
|
|
|
|
|
|
|
|
class Molmo2ProcessorKwargs(ProcessingKwargs, total=False): |
|
|
"""Molmo2 processor kwargs""" |
|
|
images_kwargs: Molmo2ImagesKwargs |
|
|
videos_kwargs: Molmo2VideoProcessorKwargs |
|
|
_defaults = { |
|
|
"text_kwargs": { |
|
|
"padding": False, |
|
|
"return_mm_token_type_ids": True, |
|
|
}, |
|
|
"videos_kwargs": {"return_metadata": True}, |
|
|
} |
|
|
|
|
|
|
|
|
class Molmo2Processor(ProcessorMixin): |
|
|
attributes = ["image_processor", "video_processor", "tokenizer"] |
|
|
optional_attributes = [ |
|
|
"chat_template", |
|
|
"time_mode", |
|
|
"image_use_col_tokens", |
|
|
"use_single_crop_col_tokens", |
|
|
"use_single_crop_start_token", |
|
|
"video_use_col_tokens", |
|
|
"use_frame_special_tokens", |
|
|
] |
|
|
image_processor_class = "AutoImageProcessor" |
|
|
video_processor_class = "AutoVideoProcessor" |
|
|
tokenizer_class = "AutoTokenizer" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
image_processor: Molmo2ImageProcessor = None, |
|
|
video_processor: Molmo2VideoProcessor = None, |
|
|
tokenizer: AutoTokenizer = None, |
|
|
chat_template: Optional[str] = None, |
|
|
image_use_col_tokens: Optional[bool] = True, |
|
|
use_single_crop_col_tokens: Optional[bool] = None, |
|
|
use_single_crop_start_token: Optional[bool] = True, |
|
|
video_use_col_tokens: Optional[bool] = False, |
|
|
use_frame_special_tokens: Optional[bool] = True, |
|
|
**kwargs |
|
|
) -> None: |
|
|
super().__init__( |
|
|
image_processor, |
|
|
video_processor, |
|
|
tokenizer, |
|
|
chat_template=chat_template, |
|
|
image_use_col_tokens=image_use_col_tokens, |
|
|
use_single_crop_col_tokens=use_single_crop_col_tokens, |
|
|
use_single_crop_start_token=use_single_crop_start_token, |
|
|
video_use_col_tokens=video_use_col_tokens, |
|
|
use_frame_special_tokens=use_frame_special_tokens, |
|
|
) |
|
|
|
|
|
self.image_placeholder_token = IMAGE_PROMPT |
|
|
self.video_placeholder_token = VIDEO_PROMPT |
|
|
self.image_token_ids = [ |
|
|
tokenizer.convert_tokens_to_ids(token) |
|
|
for token in IMAGE_TOKENS |
|
|
] |
|
|
|
|
|
def get_image_tokens(self, image_grid: np.ndarray): |
|
|
resized_h, resized_w, height, width = image_grid |
|
|
per_row = np.full(width, IMAGE_PATCH_TOKEN) |
|
|
if self.image_use_col_tokens: |
|
|
per_row = np.concatenate([per_row, [IM_COL_TOKEN]], 0) |
|
|
joint = [ |
|
|
[IM_START_TOKEN], |
|
|
np.tile(per_row, [height]), |
|
|
[IM_END_TOKEN], |
|
|
] |
|
|
per_row = np.full(resized_w, IMAGE_PATCH_TOKEN) |
|
|
use_single_crop_col_tokens = ( |
|
|
self.image_use_col_tokens |
|
|
if self.use_single_crop_col_tokens is None |
|
|
else self.use_single_crop_col_tokens |
|
|
) |
|
|
image_start_token = ( |
|
|
LOW_RES_IMAGE_START_TOKEN |
|
|
if self.use_single_crop_start_token |
|
|
else IM_START_TOKEN |
|
|
) |
|
|
if use_single_crop_col_tokens: |
|
|
per_row = np.concatenate([per_row, [IM_COL_TOKEN]], 0) |
|
|
joint = [ |
|
|
[image_start_token], |
|
|
np.tile(per_row, [resized_h]), |
|
|
[IM_END_TOKEN], |
|
|
] + joint |
|
|
|
|
|
return np.concatenate(joint) |
|
|
|
|
|
def get_video_string( |
|
|
self, |
|
|
video_grid: np.ndarray, |
|
|
timestamps: np.ndarray, |
|
|
): |
|
|
if self.use_frame_special_tokens: |
|
|
start_token_id = FRAME_START_TOKEN |
|
|
end_token_id = FRAME_END_TOKEN |
|
|
else: |
|
|
start_token_id = IM_START_TOKEN |
|
|
end_token_id = IM_END_TOKEN |
|
|
|
|
|
num_frames, h, w = video_grid |
|
|
video_string: str = "" |
|
|
for frame_idx, frame_time in enumerate(timestamps): |
|
|
|
|
|
prev_space = " " if frame_idx > 0 else "" |
|
|
frame_prefix = prev_space + f"{frame_time:.1f} " |
|
|
|
|
|
video_string += frame_prefix |
|
|
per_row = np.full(w, IMAGE_PATCH_TOKEN) |
|
|
if self.video_use_col_tokens: |
|
|
per_row = np.concatenate([per_row, [IM_COL_TOKEN]], 0) |
|
|
extra_tokens = np.tile(per_row, [h]) |
|
|
video_tokens = [ |
|
|
[start_token_id], |
|
|
extra_tokens, |
|
|
[end_token_id], |
|
|
] |
|
|
video_string += "".join(np.concatenate(video_tokens, 0)) |
|
|
|
|
|
return video_string |
|
|
|
|
|
def insert_bos( |
|
|
self, |
|
|
input_ids: np.ndarray, |
|
|
attention_mask: np.ndarray, |
|
|
bos_token_id: int, |
|
|
pad_token_id: int, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
input_ids: [B, S] array with left padding |
|
|
attention_mask: [B, S] array (0 for pad, 1 for valid) |
|
|
bos_token_id: int |
|
|
pad_token_id: int |
|
|
Returns: |
|
|
input_ids_out: [B, S] or [B, S+1] array with bos inserted if needed |
|
|
attention_mask_out: same shape as input_ids_out |
|
|
""" |
|
|
|
|
|
need_to_expand = len(input_ids.shape) == 1 |
|
|
if need_to_expand: |
|
|
input_ids = input_ids[None, :] |
|
|
attention_mask = attention_mask[None, :] |
|
|
|
|
|
B, S = input_ids.shape |
|
|
|
|
|
|
|
|
if S == 0: |
|
|
new_input_ids = np.full((B, 1), bos_token_id, dtype=input_ids.dtype) |
|
|
new_attention_mask = np.ones((B, 1), dtype=attention_mask.dtype) |
|
|
if need_to_expand: |
|
|
new_input_ids = new_input_ids[0] |
|
|
new_attention_mask = new_attention_mask[0] |
|
|
return new_input_ids, new_attention_mask |
|
|
|
|
|
first_valid_index = (attention_mask == 1).argmax(axis=-1) |
|
|
bos_already_present = np.all(input_ids[np.arange(B), first_valid_index] == bos_token_id) |
|
|
|
|
|
if bos_already_present: |
|
|
if need_to_expand: |
|
|
input_ids = input_ids[0] |
|
|
attention_mask = attention_mask[0] |
|
|
return input_ids, attention_mask |
|
|
else: |
|
|
new_input_ids = np.full((B, S+1), pad_token_id, dtype=input_ids.dtype) |
|
|
new_attention_mask = np.zeros((B, S+1), dtype=attention_mask.dtype) |
|
|
|
|
|
src_idx = np.tile(np.arange(S), (B, 1)) |
|
|
valid_mask = src_idx >= first_valid_index[:, None] |
|
|
tgt_idx = src_idx + 1 |
|
|
batch_idx = np.tile(np.arange(B)[:, None], (1, S)) |
|
|
|
|
|
|
|
|
flat_vals = input_ids[valid_mask] |
|
|
flat_batch = batch_idx[valid_mask] |
|
|
flat_tgt = tgt_idx[valid_mask] |
|
|
|
|
|
new_input_ids[flat_batch, flat_tgt] = flat_vals |
|
|
new_attention_mask[flat_batch, flat_tgt] = 1 |
|
|
|
|
|
insert_pos = first_valid_index |
|
|
new_input_ids[np.arange(B), insert_pos] = bos_token_id |
|
|
new_attention_mask[np.arange(B), insert_pos] = 1 |
|
|
|
|
|
if need_to_expand: |
|
|
new_input_ids = new_input_ids[0] |
|
|
new_attention_mask = new_attention_mask[0] |
|
|
|
|
|
return new_input_ids, new_attention_mask |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None, |
|
|
images: ImageInput = None, |
|
|
videos: VideoInput = None, |
|
|
**kwargs: Unpack[Molmo2ProcessorKwargs], |
|
|
) -> BatchFeature: |
|
|
""" |
|
|
|
|
|
Args: |
|
|
text (`str`, `list[str]`, `list[list[str]]`): |
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
|
tensor. Both channels-first and channels-last formats are supported. |
|
|
videos (`dict[str, Any]` or `list[dict[str, Any]]`): |
|
|
The video or batch of videos to be prepared. Each video can be a dictionary with the following keys: |
|
|
- `"frames"`: `np.ndarray` of shape (T, H, W, 3) |
|
|
- `"timestamps"`: `np.ndarray` of shape (T,) |
|
|
- `"sampled_fps"`: `float` (optional) |
|
|
- `"sampling_augmentation"`: `str` (optional) |
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
|
|
Returns: |
|
|
`BatchFeature`: A [`BatchFeature`] with the following fields: |
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). |
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
|
- **image_token_pooling** -- Indices of the patches in `image_grids` to pool for each token in `image_tokens`. |
|
|
Returned when `images` is not `None`. |
|
|
- **image_grids** -- Grids of images. Returned when `images` is not `None`. |
|
|
- **image_num_crops** -- Number of crops for each image. Returned when `images` is not `None`. |
|
|
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`. |
|
|
- **video_token_pooling** -- Indices of the patches in `video_grids` to pool for each token in `video_tokens`. |
|
|
Returned when `videos` is not `None`. |
|
|
- **video_grids** -- Grids of videos. Returned when `videos` is not `None`. |
|
|
""" |
|
|
|
|
|
output_kwargs = self._merge_kwargs( |
|
|
Molmo2ProcessorKwargs, |
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
if images is not None: |
|
|
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) |
|
|
image_grids = image_inputs["image_grids"] |
|
|
else: |
|
|
image_inputs = {} |
|
|
image_grids = None |
|
|
|
|
|
if videos is not None: |
|
|
videos_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"]) |
|
|
video_grids = videos_inputs["video_grids"] |
|
|
|
|
|
if "return_metadata" not in kwargs: |
|
|
video_metadata = videos_inputs.pop("video_metadata") |
|
|
else: |
|
|
video_metadata = videos_inputs["video_metadata"] |
|
|
else: |
|
|
videos_inputs = {} |
|
|
video_grids = None |
|
|
|
|
|
if not isinstance(text, list): |
|
|
text = [text] |
|
|
|
|
|
text = text.copy() |
|
|
|
|
|
if image_grids is not None: |
|
|
index = 0 |
|
|
for i in range(len(text)): |
|
|
num_images = text[i].count(self.image_placeholder_token) |
|
|
image_grids_i = image_grids[index:index+num_images] |
|
|
for image_grid in image_grids_i: |
|
|
image_tokens = self.get_image_tokens(image_grid) |
|
|
image_string = "".join(image_tokens) |
|
|
text[i] = text[i].replace(self.image_placeholder_token, image_string, 1) |
|
|
index += num_images |
|
|
|
|
|
if video_grids is not None: |
|
|
index = 0 |
|
|
for i in range(len(text)): |
|
|
num_videos = text[i].count(self.video_placeholder_token) |
|
|
assert num_videos in {0, 1}, "At most one video is supported for now" |
|
|
video_grids_i = video_grids[index:index+num_videos] |
|
|
metadata_i = video_metadata[index:index+num_videos] |
|
|
for video_grid, metadata in zip(video_grids_i, metadata_i): |
|
|
video_string = self.get_video_string( |
|
|
video_grid, |
|
|
metadata.timestamps, |
|
|
) |
|
|
text[i] = text[i].replace(self.video_placeholder_token, video_string, 1) |
|
|
index += num_videos |
|
|
|
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) |
|
|
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False) |
|
|
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) |
|
|
|
|
|
input_ids = text_inputs["input_ids"] |
|
|
attention_mask = text_inputs["attention_mask"] |
|
|
|
|
|
input_ids = np.array(input_ids) |
|
|
attention_mask = np.array(attention_mask) |
|
|
|
|
|
bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id |
|
|
input_ids, attention_mask = self.insert_bos( |
|
|
input_ids, attention_mask, bos, self.tokenizer.pad_token_id |
|
|
) |
|
|
|
|
|
if return_mm_token_type_ids: |
|
|
image_tokens = np.array(self.image_token_ids).astype(input_ids.dtype) |
|
|
token_type_ids = np.any(input_ids[:, :, None] == image_tokens[None, None, :], axis=-1) |
|
|
text_inputs["token_type_ids"] = token_type_ids.tolist() |
|
|
|
|
|
text_inputs["input_ids"] = input_ids.tolist() |
|
|
text_inputs["attention_mask"] = attention_mask.tolist() |
|
|
|
|
|
return BatchFeature( |
|
|
data={**text_inputs, **image_inputs, **videos_inputs}, |
|
|
tensor_type=return_tensors, |
|
|
) |
|
|
|
|
|
def post_process_image_text_to_text( |
|
|
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs |
|
|
): |
|
|
""" |
|
|
Post-process the output of the model to decode the text. |
|
|
|
|
|
Args: |
|
|
generated_outputs (`torch.Tensor` or `np.ndarray`): |
|
|
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` |
|
|
or `(sequence_length,)`. |
|
|
skip_special_tokens (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. |
|
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
|
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method. |
|
|
**kwargs: |
|
|
Additional arguments to be passed to the tokenizer's `batch_decode method`. |
|
|
|
|
|
Returns: |
|
|
`list[str]`: The decoded text. |
|
|
""" |
|
|
return self.tokenizer.batch_decode( |
|
|
generated_outputs, |
|
|
skip_special_tokens=skip_special_tokens, |
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
Molmo2Processor.register_for_auto_class() |