|
import logging |
|
import math |
|
from copy import deepcopy |
|
from dataclasses import fields, dataclass, replace |
|
from enum import Enum |
|
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping |
|
|
|
import torch |
|
from einops import einsum, einops |
|
from transformers import PreTrainedModel, GenerationConfig |
|
from transformers.cache_utils import Cache |
|
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput |
|
from transformers.models.auto import AutoModelForCausalLM |
|
from torch import nn |
|
|
|
from .config_molmo import MolmoConfig |
|
from torch.nn import functional as F |
|
|
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
class BufferCache(dict, MutableMapping[str, torch.Tensor]): |
|
""" |
|
Cache for attention biases and other things that would normally be stored as buffers. |
|
We avoid using buffers because we've run into various issues doing so with FSDP. |
|
In general it appears the way FSDP handles buffers is not well-defined. |
|
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid |
|
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into |
|
NaNs when they're synchronized due to casting or some other issue. |
|
""" |
|
|
|
|
|
class StrEnum(str, Enum): |
|
def __str__(self) -> str: |
|
return self.value |
|
|
|
def __repr__(self) -> str: |
|
return f"'{str(self)}'" |
|
|
|
|
|
class ImageProjectType(StrEnum): |
|
mlp = "mlp" |
|
mlpx2 = "2mlp" |
|
linear = "linear" |
|
|
|
|
|
class ImagePooling2DType(StrEnum): |
|
attention = "attention" |
|
attention_meanq = "attention-meanq" |
|
attention_2wide = "attention_2wide" |
|
attention_v2 = "attention-v2" |
|
none = "none" |
|
stack = "stack" |
|
|
|
|
|
class ActivationType(StrEnum): |
|
quick_gelu = "quick_gelu" |
|
gelu = "gelu" |
|
gelu_tanh = "gelu_tanh" |
|
relu = "relu" |
|
silu = "silu" |
|
llama_geglu = "llama_geglu" |
|
llama_geglu_tanh = "llama_geglu_tanh" |
|
llama_swiglu = "llama_swiglu" |
|
swiglu = "swiglu" |
|
|
|
|
|
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False): |
|
""" |
|
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf`` |
|
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``. |
|
""" |
|
if check_neg_inf: |
|
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min) |
|
if check_pos_inf: |
|
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max) |
|
|
|
|
|
class MolmoConfigurationError(Exception): |
|
pass |
|
|
|
|
|
def _non_meta_init_device(config) -> torch.device: |
|
if config.init_device is not None and config.init_device != "meta": |
|
return torch.device(config.init_device) |
|
else: |
|
return torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
""" |
|
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864). |
|
""" |
|
|
|
def __init__(self, config: MolmoConfig, cache: BufferCache): |
|
super().__init__() |
|
self.config = config |
|
self.__cache = cache |
|
|
|
self.get_rotary_embedding( |
|
config.max_position_embeddings or config.max_sequence_length, |
|
_non_meta_init_device(config) |
|
) |
|
|
|
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if ( |
|
(pos_sin := self.__cache.get("rope_pos_sin")) is not None |
|
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None |
|
and pos_sin.shape[-2] >= seq_len |
|
and pos_cos.shape[-2] >= seq_len |
|
): |
|
if pos_sin.device != device: |
|
pos_sin = pos_sin.to(device) |
|
self.__cache["rope_pos_sin"] = pos_sin |
|
if pos_cos.device != device: |
|
pos_cos = pos_cos.to(device) |
|
self.__cache["rope_pos_cos"] = pos_cos |
|
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :] |
|
|
|
with torch.autocast(device.type, enabled=False): |
|
dim = self.config.d_model // self.config.n_heads |
|
inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim)) |
|
seq = torch.arange(seq_len, device=device, dtype=torch.float) |
|
freqs = torch.einsum("i , j -> i j", seq, inv_freq) |
|
if self.config.rope_impl == "cockatoo": |
|
positions = freqs.repeat_interleave(2, dim=-1) |
|
else: |
|
positions = torch.cat((freqs, freqs), dim=-1) |
|
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :] |
|
self.__cache["rope_pos_sin"] = pos_sin |
|
self.__cache["rope_pos_cos"] = pos_cos |
|
return pos_sin, pos_cos |
|
|
|
def rotate_half(self, x: torch.Tensor) -> torch.Tensor: |
|
B, nh, T, hs = x.size() |
|
x = x.view(B, nh, T, 2, hs // 2) |
|
x1, x2 = x.unbind(dim=-2) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor: |
|
B, nh, T, hs = x.size() |
|
x = x.view(B, nh, T, hs // 2, 2) |
|
x1, x2 = x.unbind(dim=-1) |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return x.view(B, nh, T, hs) |
|
|
|
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor: |
|
if self.config.rope_impl == "cockatoo": |
|
return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype) |
|
else: |
|
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype) |
|
|
|
def forward( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
position_ids: Optional[torch.Tensor] = None |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if self.config.rope_full_precision: |
|
q_, k_ = q.float(), k.float() |
|
else: |
|
q_, k_ = q, k |
|
|
|
with torch.autocast(q.device.type, enabled=False): |
|
batch_size = q_.shape[0] |
|
query_len, key_len = q_.shape[-2], k_.shape[-2] |
|
if position_ids is not None: |
|
freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length) |
|
else: |
|
freqs_cis_len = key_len |
|
pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device) |
|
pos_sin = pos_sin.type_as(q_) |
|
pos_cos = pos_cos.type_as(q_) |
|
if position_ids is not None: |
|
assert query_len == key_len, "Query and key lengths must be equal when using position IDs." |
|
pos_sin = pos_sin[0, 0][position_ids].view( |
|
(batch_size, 1, key_len, pos_sin.shape[-1]) |
|
) |
|
pos_cos = pos_cos[0, 0][position_ids].view( |
|
(batch_size, 1, key_len, pos_cos.shape[-1]) |
|
) |
|
q_ = self.apply_rotary_pos_emb( |
|
pos_sin[:, :, key_len - query_len : key_len, :], |
|
pos_cos[:, :, key_len - query_len : key_len, :], |
|
q_, |
|
) |
|
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_) |
|
return q_.type_as(q), k_.type_as(k) |
|
|
|
|
|
class MolmoBlock(nn.Module): |
|
""" |
|
A base class for transformer block implementations. |
|
""" |
|
|
|
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache): |
|
super().__init__() |
|
self.layer_id = layer_id |
|
self.config = config |
|
self.hidden_size = ( |
|
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model |
|
) |
|
self.__cache = cache |
|
self._activation_checkpoint_fn = None |
|
|
|
|
|
self.dropout = Dropout(config.residual_dropout, mask_p=config.response_residual_dropout) |
|
|
|
|
|
self.k_norm: Optional[LayerNormBase] = None |
|
self.q_norm: Optional[LayerNormBase] = None |
|
if config.attention_layer_norm: |
|
assert config.effective_n_kv_heads is not None |
|
self.k_norm = LayerNormBase.build( |
|
config, |
|
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads, |
|
elementwise_affine=config.attention_layer_norm_with_affine, |
|
) |
|
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine) |
|
|
|
|
|
if config.clip_qkv is not None: |
|
assert config.clip_qkv > 0 |
|
|
|
|
|
self.act = Activation.build(config) |
|
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0 |
|
|
|
|
|
input_dim = config.d_model |
|
self.attn_out = nn.Linear( |
|
input_dim, config.d_model, |
|
bias=config.include_bias, |
|
device=config.init_device |
|
) |
|
|
|
|
|
self.ff_out = nn.Linear( |
|
int(self.act.output_multiplier * self.hidden_size), |
|
config.d_model, |
|
bias=config.include_bias, |
|
device=config.init_device, |
|
) |
|
self.ff_out._is_residual = True |
|
|
|
|
|
if self.config.rope: |
|
self.rotary_emb = RotaryEmbedding(config, self.__cache) |
|
|
|
self.flash_attn_func = None |
|
if config.attention_type == "flash": |
|
try: |
|
from flash_attn import flash_attn_func |
|
|
|
self.flash_attn_func = flash_attn_func |
|
except ModuleNotFoundError: |
|
pass |
|
|
|
def reset_parameters(self): |
|
if self.k_norm is not None: |
|
self.k_norm.reset_parameters() |
|
if self.q_norm is not None: |
|
self.q_norm.reset_parameters() |
|
init_weights( |
|
self.config, |
|
self.attn_out, |
|
d=self.config.d_model, |
|
layer_id=self.layer_id, |
|
type_of_module=ModuleType.out_module, |
|
) |
|
init_weights( |
|
self.config, |
|
self.ff_out, |
|
d=self.ff_out.in_features, |
|
layer_id=self.layer_id, |
|
type_of_module=ModuleType.out_module, |
|
) |
|
|
|
@classmethod |
|
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor: |
|
target_dtype = input_dtype |
|
|
|
|
|
|
|
if bias.device.type == "cuda" and torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled(): |
|
target_dtype = torch.get_autocast_cpu_dtype() |
|
if bias.dtype != target_dtype: |
|
bias = bias.to(target_dtype) |
|
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False) |
|
return bias |
|
|
|
def _scaled_dot_product_attention( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
dropout_p: float = 0.0, |
|
response_dropout_p: float = 0.0, |
|
is_causal: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Computes scaled dot product attention on query, key and value tensors, using an optional |
|
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified. |
|
""" |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(q.device) |
|
|
|
if self.flash_attn_func is not None and attn_mask is None: |
|
r = self.flash_attn_func( |
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal |
|
) |
|
return r.transpose(1, 2) |
|
else: |
|
|
|
assert k.size(1) == v.size(1) |
|
num_kv_heads = k.size(1) |
|
num_q_heads = q.size(1) |
|
if num_q_heads != num_kv_heads: |
|
assert num_q_heads % num_kv_heads == 0 |
|
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) |
|
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) |
|
|
|
return F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=attn_mask, |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
|
|
def attention( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
B, T, C = q.size() |
|
dtype = k.dtype |
|
|
|
|
|
if self.q_norm is not None and self.k_norm is not None: |
|
q = self.q_norm(q).to(dtype=dtype) |
|
k = self.k_norm(k).to(dtype=dtype) |
|
|
|
|
|
|
|
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2) |
|
|
|
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2) |
|
|
|
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2) |
|
|
|
if self.config.use_position_ids and self.config.rope: |
|
|
|
q, k = self.rotary_emb(q, k, position_ids=position_ids) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
k = torch.cat((past_key.to(k.device), k), dim=-2) |
|
v = torch.cat((past_value.to(v.device), v), dim=-2) |
|
|
|
present = (k, v) if use_cache else None |
|
query_len, key_len = q.shape[-2], k.shape[-2] |
|
|
|
if not self.config.use_position_ids and self.config.rope: |
|
|
|
q, k = self.rotary_emb(q, k) |
|
|
|
if attention_bias is not None: |
|
|
|
|
|
|
|
|
|
|
|
attention_bias = self._cast_attn_bias( |
|
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype |
|
) |
|
|
|
|
|
|
|
att = self._scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=attention_bias, |
|
drop_mask=drop_mask, |
|
dropout_p=0.0 if not self.training else self.config.attention_dropout, |
|
response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout, |
|
is_causal=attention_bias is None, |
|
) |
|
|
|
|
|
att = att.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
return self.attn_out(att), present |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
attention_bias: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
raise NotImplementedError |
|
|
|
@classmethod |
|
def build(cls, layer_id: int, config: MolmoConfig, cache: BufferCache): |
|
if config.block_type == "sequential": |
|
return MolmoSequentialBlock(layer_id, config, cache) |
|
elif config.block_type == "llama": |
|
return OLMoLlamaBlock(layer_id, config, cache) |
|
else: |
|
raise NotImplementedError(f"Unknown block type: '{config.block_type}'") |
|
|
|
|
|
class OLMoLlamaBlock(MolmoBlock): |
|
""" |
|
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` |
|
(plus another skip connection). This block is similar to `MolmoSequentialBlock` |
|
but some operations have slightly different implementations to imitate the |
|
behavior of Llama. |
|
""" |
|
|
|
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache): |
|
super().__init__(layer_id, config, cache) |
|
|
|
self.attn_norm = LayerNorm.build(config) |
|
self.ff_norm = LayerNorm.build(config) |
|
self.__cache = cache |
|
|
|
|
|
q_proj_out_dim = config.d_model |
|
k_proj_out_dim = config.effective_n_kv_heads * (config.d_model // config.n_heads) |
|
v_proj_out_dim = config.effective_n_kv_heads * (config.d_model // config.n_heads) |
|
|
|
self.q_proj = nn.Linear( |
|
config.d_model, q_proj_out_dim, bias=config.qkv_bias, device=config.init_device |
|
) |
|
self.k_proj = nn.Linear( |
|
config.d_model, k_proj_out_dim, bias=config.qkv_bias, device=config.init_device |
|
) |
|
self.v_proj = nn.Linear( |
|
config.d_model, v_proj_out_dim, bias=config.qkv_bias, device=config.init_device |
|
) |
|
|
|
|
|
self.ff_proj1 = nn.Linear( |
|
config.d_model, self.hidden_size // 2, bias=False, device=config.init_device |
|
) |
|
self.ff_proj2 = nn.Linear( |
|
config.d_model, self.hidden_size // 2, bias=False, device=config.init_device |
|
) |
|
if self.config.norm_after: |
|
raise NotImplementedError() |
|
|
|
def reset_parameters(self): |
|
super().reset_parameters() |
|
self.attn_norm.reset_parameters() |
|
self.ff_norm.reset_parameters() |
|
|
|
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None) |
|
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None) |
|
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None) |
|
init_weights(self.config, self.ff_proj1, d=self.config.d_model, layer_id=None) |
|
init_weights(self.config, self.ff_proj2, d=self.config.d_model, layer_id=None) |
|
|
|
def _scaled_dot_product_attention( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
dropout_p: float = 0.0, |
|
response_dropout_p: float = 0.0, |
|
is_causal: bool = False, |
|
) -> torch.Tensor: |
|
|
|
assert k.size(1) == v.size(1) |
|
num_kv_heads = k.size(1) |
|
num_q_heads = q.size(1) |
|
if num_q_heads != num_kv_heads: |
|
assert num_q_heads % num_kv_heads == 0 |
|
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) |
|
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) |
|
|
|
og_dtype = q.dtype |
|
k = k.to(q.device) |
|
v = v.to(q.device) |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(q.device) |
|
|
|
assert response_dropout_p == 0.0, "Response dropout is not supported in Llama." |
|
|
|
if self.config.float32_attention: |
|
q, k = q.to(torch.float), k.to(torch.float) |
|
|
|
if self.config.attention_type == "direct": |
|
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / (q.shape[-1] ** 0.5) |
|
|
|
if is_causal: |
|
assert attn_mask is None |
|
|
|
query_len, key_len = q.shape[-2], k.shape[-2] |
|
attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len] |
|
elif attn_mask is not None: |
|
attn_bias = attn_mask |
|
else: |
|
attn_bias = torch.zeros_like(attn_weights) |
|
|
|
attn_weights += attn_bias |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout_p, training=self.training).to(v.dtype) |
|
|
|
att = torch.matmul(attn_weights, v) |
|
elif self.config.attention_type == "sdpa": |
|
att = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=attn_mask, |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
else: |
|
raise NotImplementedError(self.config.attention_type) |
|
att = att.to(og_dtype) |
|
return att |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
|
|
|
|
|
|
|
|
|
|
x_normed = self.attn_norm(x) |
|
q = self.q_proj(x_normed) |
|
k = self.k_proj(x_normed) |
|
v = self.v_proj(x_normed) |
|
|
|
if self.config.clip_qkv is not None: |
|
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
|
|
|
if self._activation_checkpoint_fn is not None: |
|
att, cache = self._activation_checkpoint_fn( |
|
self.attention, q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache |
|
) |
|
else: |
|
att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache) |
|
|
|
|
|
|
|
x = x + self.dropout(att, drop_mask=drop_mask) |
|
|
|
|
|
|
|
og_x = x |
|
if self._activation_checkpoint_fn is not None: |
|
x = self._activation_checkpoint_fn(self.ff_norm, x) |
|
else: |
|
x = self.ff_norm(x) |
|
x1 = self.ff_proj1(x) |
|
x2 = self.ff_proj2(x) |
|
if self._activation_checkpoint_fn is not None: |
|
x = self._activation_checkpoint_fn(self.act, x1, x2) |
|
else: |
|
x = self.act(x1, x2) |
|
x = self.ff_out(x) |
|
x = self.dropout(x, drop_mask=drop_mask) |
|
x = og_x + x |
|
|
|
return x, cache |
|
|
|
|
|
class MolmoSequentialBlock(MolmoBlock): |
|
""" |
|
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` |
|
(plus another skip connection). |
|
""" |
|
|
|
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache): |
|
super().__init__(layer_id, config, cache) |
|
|
|
self.attn_norm = LayerNorm.build(config) |
|
self.ff_norm = LayerNorm.build(config) |
|
|
|
|
|
head_dim = config.d_model // config.n_heads |
|
self.fused_dims = ( |
|
config.d_model, |
|
config.effective_n_kv_heads * head_dim, |
|
config.effective_n_kv_heads * head_dim, |
|
) |
|
self.att_proj = nn.Linear( |
|
config.d_model, sum(self.fused_dims), |
|
bias=config.include_bias or config.qkv_bias, |
|
device=config.init_device |
|
) |
|
|
|
self.ff_proj = nn.Linear( |
|
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device |
|
) |
|
|
|
def reset_parameters(self): |
|
super().reset_parameters() |
|
self.attn_norm.reset_parameters() |
|
self.ff_norm.reset_parameters() |
|
|
|
init_weights( |
|
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module |
|
) |
|
init_weights( |
|
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
drop_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not self.config.norm_after: |
|
if self._activation_checkpoint_fn is not None: |
|
atten_in = self._activation_checkpoint_fn(self.attn_norm, x) |
|
else: |
|
atten_in = self.attn_norm(x) |
|
else: |
|
atten_in = x |
|
qkv = self.att_proj(atten_in) |
|
|
|
if self.config.clip_qkv is not None: |
|
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
|
q, k, v = qkv.split(self.fused_dims, dim=-1) |
|
|
|
|
|
if self._activation_checkpoint_fn is not None: |
|
att, cache = self._activation_checkpoint_fn( |
|
self.attention, q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache |
|
) |
|
else: |
|
att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache) |
|
|
|
if self.config.norm_after: |
|
if self._activation_checkpoint_fn is not None: |
|
att = self._activation_checkpoint_fn(self.attn_norm, att) |
|
else: |
|
att = self.attn_norm(att) |
|
|
|
|
|
|
|
x = x + self.dropout(att, drop_mask=drop_mask) |
|
|
|
|
|
|
|
og_x = x |
|
|
|
if not self.config.norm_after: |
|
if self._activation_checkpoint_fn is not None: |
|
x = self._activation_checkpoint_fn(self.ff_norm, x) |
|
else: |
|
x = self.ff_norm(x) |
|
|
|
x = self.ff_proj(x) |
|
if self._activation_checkpoint_fn is not None: |
|
x = self._activation_checkpoint_fn(self.act, x) |
|
else: |
|
x = self.act(x) |
|
x = self.ff_out(x) |
|
|
|
if self.config.norm_after: |
|
if self._activation_checkpoint_fn is not None: |
|
x = self._activation_checkpoint_fn(self.ff_norm, x) |
|
else: |
|
x = self.ff_norm(x) |
|
|
|
x = self.dropout(x, drop_mask=drop_mask) |
|
x = og_x + x |
|
|
|
return x, cache |
|
|
|
|
|
class Embedding(nn.Module): |
|
def __init__( |
|
self, |
|
num_embeddings: int, |
|
num_new_embeddings: int, |
|
features: int, |
|
device: Union[str, torch.device], |
|
initializer_range: float = 0.02, |
|
new_embed_initializer_range: float = 0.02, |
|
): |
|
super().__init__() |
|
self.initializer_range = initializer_range |
|
self.new_embed_initializer_range = new_embed_initializer_range |
|
self.embedding = nn.Parameter( |
|
torch.zeros(num_embeddings, features, device=device), |
|
) |
|
self.new_embedding = nn.Parameter( |
|
torch.zeros(num_new_embeddings, features, device=device), |
|
) |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.embedding, std=self.initializer_range) |
|
nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0)) |
|
|
|
|
|
class Dropout(nn.Dropout): |
|
def __init__( |
|
self, |
|
p: float = 0.5, |
|
inplace: bool = False, |
|
mask_p: float = 0, |
|
broadcast_dims: Sequence[int] = (), |
|
): |
|
super().__init__(p, inplace) |
|
self.mask_p = mask_p |
|
self.broadcast_dims = broadcast_dims |
|
|
|
def forward(self, input: torch.Tensor, drop_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
""" |
|
:param input: A tensor of shape `(batch_size, seq_len, embed_dim)` |
|
:param drop_mask: A tensor of shape `(batch_size, seq_len)` with values of zero or one. |
|
""" |
|
if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0): |
|
return input |
|
else: |
|
if self.mask_p > 0. and self.training: |
|
assert drop_mask is not None |
|
drop_mask = drop_mask.to(input.dtype) |
|
keep_prob = 1.0 - self.p |
|
keep_prob2 = 1.0 - self.mask_p |
|
keep_prob = drop_mask * keep_prob2 + (1 - drop_mask) * keep_prob |
|
keep_prob = keep_prob.unsqueeze(-1) |
|
dropout_shape = list(input.shape) |
|
keep_prob = keep_prob.broadcast_to(dropout_shape) |
|
multiplier = input.new_empty(dropout_shape).bernoulli_(keep_prob) |
|
multiplier.div_(keep_prob) |
|
return input * multiplier |
|
elif self.p > 0. and len(self.broadcast_dims) > 0 and self.training: |
|
keep_prob = 1.0 - self.p |
|
dropout_shape = list(input.shape) |
|
for dim in self.broadcast_dims: |
|
dropout_shape[dim] = 1 |
|
keep = input.new_empty(dropout_shape).bernoulli_(keep_prob) |
|
multiplier = keep.broadcast_to(input.shape) |
|
multiplier.div_(keep_prob) |
|
input = input * multiplier |
|
else: |
|
return F.dropout(input, self.p, self.training, self.inplace) |
|
|
|
|
|
@dataclass |
|
class VisionBackboneConfig: |
|
image_model_type: str = "openai" |
|
image_default_input_size: Tuple[int, int] = (336, 336) |
|
image_patch_size: int = 14 |
|
image_pos_patch_size: int = 14 |
|
image_emb_dim: int = 1024 |
|
image_num_heads: int = 16 |
|
image_num_key_value_heads: int = 16 |
|
image_num_layers: int = 24 |
|
image_head_dim: int = 64 |
|
image_mlp_dim: int = 4096 |
|
image_mlp_activations: str = "gelu" |
|
image_dropout_rate: float = 0.0 |
|
image_num_pos: int = 577 |
|
image_norm_eps: float = 1e-5 |
|
attention_dropout: float = 0.0 |
|
residual_dropout: float = 0.0 |
|
initializer_range: float = 0.02 |
|
fsdp_wrap: bool = False |
|
resize_mode: str = "default" |
|
|
|
def __post_init__(self): |
|
self.image_default_input_size = tuple(self.image_default_input_size) |
|
|
|
@property |
|
def image_num_patch(self): |
|
h, w = self.image_default_input_size |
|
return h // self.image_patch_size, w // self.image_patch_size |
|
|
|
|
|
@dataclass |
|
class FullMolmoConfig: |
|
d_model: int = 768 |
|
n_heads: int = 12 |
|
n_kv_heads: Optional[int] = None |
|
qkv_bias: bool = False |
|
clip_qkv: Optional[float] = None |
|
n_layers: int = 12 |
|
mlp_ratio: int = 4 |
|
mlp_hidden_size: Optional[int] = None |
|
activation_type: str = "swiglu" |
|
block_type: str = "sequential" |
|
block_group_size: int = 1 |
|
alibi: bool = False |
|
alibi_bias_max: float = 8.0 |
|
rope: bool = False |
|
rope_full_precision: bool = True |
|
rope_theta: float = 10000. |
|
rope_impl: str = "cockatoo" |
|
vision_backbone: Optional[VisionBackboneConfig] = None |
|
vit_load_path: Optional[str] = None |
|
llm_load_path: Optional[str] = None |
|
attention_type: str = "sdpa" |
|
float32_attention: bool = True |
|
attention_dropout: float = 0.1 |
|
response_attention_dropout: float = 0.0 |
|
multi_query_attention: Optional[bool] = None |
|
attention_layer_norm: bool = False |
|
residual_dropout: float = 0.1 |
|
response_residual_dropout: float = 0.0 |
|
embedding_dropout: float = 0.1 |
|
layer_norm_type: str = "default" |
|
layer_norm_with_affine: bool = True |
|
layer_norm_eps: Optional[float] = None |
|
attention_layer_norm_with_affine: bool = True |
|
max_sequence_length: int = 1024 |
|
max_position_embeddings: Optional[int] = None |
|
include_bias: bool = True |
|
bias_for_layer_norm: Optional[bool] = None |
|
scale_logits: bool = False |
|
vocab_size: int = 50257 |
|
embedding_size: Optional[int] = 50304 |
|
additional_vocab_size: Optional[int] = None |
|
new_embedding_init_range: float = 0.02 |
|
weight_tying: bool = True |
|
pad_token_id: int = -1 |
|
init_device: Optional[str] = None |
|
init_std: float = 0.02 |
|
init_cutoff_factor: Optional[float] = None |
|
norm_after: bool = False |
|
precision: Optional[str] = None |
|
max_crops: int = 12 |
|
crop_mode: str = "patchify-v2-and-resize-c2" |
|
do_random_scale: bool = True |
|
use_col_tokens: bool = True |
|
image_padding_embed: Optional[str] = None |
|
vit_layers: Tuple = (-1,) |
|
image_pooling_h: int = 2 |
|
image_pooling_w: int = 2 |
|
image_pooling_2d: str = "attention" |
|
image_projector: str = "mlp" |
|
image_feature_dropout: float = 0.0 |
|
use_cls_feature: bool = False |
|
initializer_range: float = 0.02 |
|
pad_tokenizer: bool = False |
|
normalize_input_embeds: bool = False |
|
use_position_ids: bool = True |
|
query_pre_attn_scalar: int = 224 |
|
|
|
@property |
|
def effective_n_kv_heads(self) -> int: |
|
if self.n_kv_heads is None: |
|
if self.multi_query_attention is True: |
|
return 1 |
|
else: |
|
return self.n_heads |
|
else: |
|
if self.multi_query_attention is None: |
|
return self.n_kv_heads |
|
if self.multi_query_attention: |
|
n_kv_heads_should_be = 1 |
|
else: |
|
n_kv_heads_should_be = self.n_heads |
|
if self.n_kv_heads == n_kv_heads_should_be: |
|
return n_kv_heads_should_be |
|
else: |
|
raise MolmoConfigurationError( |
|
"You can't set `multi_query_attention` and `n_kv_heads` at the same time." |
|
) |
|
|
|
@property |
|
def image_num_patch(self): |
|
assert self.vision_backbone is not None |
|
return self.vision_backbone.image_num_patch |
|
|
|
@property |
|
def image_patch_size(self): |
|
assert self.vision_backbone is not None |
|
return self.visoin_backbone.image_patch_size |
|
|
|
def llm_patches_per_crop(self): |
|
h, w = self.image_num_patch |
|
|
|
h = (h + self.image_pooling_h - 1) // self.image_pooling_h |
|
w = (w + self.image_pooling_w - 1) // self.image_pooling_w |
|
return h, w |
|
|
|
|
|
def _expand_token(token, batch_size: int): |
|
return token.view(1, 1, -1).expand(batch_size, -1, -1) |
|
|
|
|
|
class LayerNormFp32(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back). |
|
Derived from https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py. |
|
""" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
orig_type = x.dtype |
|
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
|
|
class ViTMLP(nn.Module): |
|
def __init__(self, config: FullMolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
v_cfg = config.vision_backbone |
|
|
|
self.w1 = nn.Linear( |
|
v_cfg.image_emb_dim, |
|
v_cfg.image_mlp_dim, |
|
bias=True, |
|
device=config.init_device, |
|
) |
|
|
|
cfg = deepcopy(config) |
|
cfg.activation_type = v_cfg.image_mlp_activations |
|
self.act = Activation.build(cfg) |
|
self.w2 = nn.Linear( |
|
v_cfg.image_mlp_dim, |
|
v_cfg.image_emb_dim, |
|
bias=True, |
|
device=config.init_device, |
|
) |
|
|
|
def reset_parameters(self): |
|
v_cfg = self.config.vision_backbone |
|
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0) |
|
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0) |
|
nn.init.zeros_(self.w1.bias) |
|
nn.init.zeros_(self.w2.bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.w1(x) |
|
x = self.act(x) |
|
x = self.w2(x) |
|
return x |
|
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
|
|
def __init__(self, config: FullMolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
v_cfg = config.vision_backbone |
|
self.attention = MultiHeadDotProductAttention(config) |
|
self.feed_forward = ViTMLP(config) |
|
self.attention_norm = nn.LayerNorm( |
|
v_cfg.image_emb_dim, |
|
eps=v_cfg.image_norm_eps, |
|
device=config.init_device, |
|
) |
|
self.ffn_norm = nn.LayerNorm( |
|
v_cfg.image_emb_dim, |
|
eps=v_cfg.image_norm_eps, |
|
device=config.init_device, |
|
) |
|
|
|
def reset_parameters(self): |
|
self.attention.reset_parameters() |
|
self.feed_forward.reset_parameters() |
|
self.attention_norm.reset_parameters() |
|
self.ffn_norm.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x + self.attention(self.attention_norm(x)) |
|
x = x + self.feed_forward(self.ffn_norm(x)) |
|
return x |
|
|
|
|
|
class BlockCollection(nn.Module): |
|
|
|
def __init__(self, config: FullMolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
self.grad_checkpointing: bool = False |
|
|
|
v_cfg = config.vision_backbone |
|
self.resblocks = nn.ModuleList([ |
|
ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers) |
|
]) |
|
|
|
def reset_parameters(self): |
|
for r in self.resblocks: |
|
r.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
hidden_states = [] |
|
for r in self.resblocks: |
|
x = r(x) |
|
hidden_states.append(x) |
|
return hidden_states |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
|
|
def __init__(self, config: FullMolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
v_cfg = config.vision_backbone |
|
|
|
self.scale = v_cfg.image_emb_dim ** -0.5 |
|
self.class_embedding = nn.Parameter( |
|
torch.zeros(v_cfg.image_emb_dim, device=config.init_device), |
|
) |
|
self.num_prefix_tokens: int = 1 |
|
self.positional_embedding = nn.Parameter( |
|
torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device), |
|
) |
|
|
|
image_patch_size = v_cfg.image_patch_size |
|
self.patch_embedding = nn.Linear( |
|
image_patch_size * image_patch_size * 3, |
|
v_cfg.image_emb_dim, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
|
|
self.pre_ln = LayerNormFp32( |
|
v_cfg.image_emb_dim, |
|
eps=v_cfg.image_norm_eps, |
|
device=config.init_device, |
|
) |
|
|
|
self.transformer = BlockCollection(config) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.transformer.grad_checkpointing = enable |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.class_embedding, std=self.scale) |
|
nn.init.normal_(self.positional_embedding, std=self.scale) |
|
nn.init.normal_(self.patch_embedding.weight, std=0.02) |
|
self.pre_ln.reset_parameters() |
|
self.transformer.reset_parameters() |
|
|
|
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor: |
|
cls_emb = self.positional_embedding[0:1] |
|
pos_emb = self.positional_embedding[1:] |
|
|
|
pos_emb = pos_emb.reshape( |
|
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]) |
|
) |
|
|
|
(patch_num_0, patch_num_1) = patch_num |
|
|
|
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: |
|
|
|
|
|
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2) |
|
pos_emb = F.interpolate( |
|
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True, |
|
) |
|
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0) |
|
|
|
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1]) |
|
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype) |
|
return x |
|
|
|
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]: |
|
""" |
|
: param x: (batch_size, num_patch, n_pixels) |
|
""" |
|
if patch_num is None: |
|
patch_num = self.config.vision_backbone.image_num_patch |
|
B, N, D = x.shape |
|
|
|
x = self.patch_embedding(x) |
|
|
|
|
|
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) |
|
x = self.add_pos_emb(x, patch_num) |
|
|
|
x = self.pre_ln(x) |
|
|
|
hidden_states = self.transformer(x) |
|
return hidden_states |
|
|
|
|
|
class MultiHeadDotProductAttention(nn.Module): |
|
def __init__(self, config: FullMolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True): |
|
super().__init__() |
|
self.config = config |
|
self.use_bias = use_bias |
|
|
|
v_cfg = config.vision_backbone |
|
self.embed_dim = v_cfg.image_emb_dim |
|
self.num_heads = v_cfg.image_num_heads |
|
self.head_dim = v_cfg.image_head_dim |
|
self.num_key_value_heads = v_cfg.image_num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.initializer_range = v_cfg.initializer_range |
|
self.is_vit_layer = is_vit_layer |
|
|
|
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers) |
|
|
|
self.wq = nn.Linear( |
|
nlayers * self.embed_dim, |
|
self.num_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wk = nn.Linear( |
|
nlayers * self.embed_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wv = nn.Linear( |
|
nlayers * self.embed_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wo = nn.Linear( |
|
self.num_heads * self.head_dim, |
|
self.embed_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.attention_dropout: Optional[Dropout] = None |
|
if v_cfg.attention_dropout > 0: |
|
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1)) |
|
self.residual_dropout = Dropout(v_cfg.residual_dropout) |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.wq.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wk.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wv.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wo.weight, std=self.initializer_range) |
|
if self.use_bias: |
|
nn.init.constant_(self.wq.bias, 0) |
|
nn.init.constant_(self.wk.bias, 0) |
|
nn.init.constant_(self.wv.bias, 0) |
|
nn.init.constant_(self.wo.bias, 0) |
|
|
|
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor: |
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) |
|
|
|
def _merge_heads(self, hidden_states) -> torch.Tensor: |
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) |
|
|
|
def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
|
if inputs_kv is not None: |
|
inputs_k = inputs_kv |
|
inputs_v = inputs_kv |
|
else: |
|
inputs_k = inputs_q |
|
inputs_v = inputs_q |
|
|
|
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v) |
|
|
|
xq = self._split_heads(xq, self.num_heads) |
|
xk = self._split_heads(xk, self.num_key_value_heads) |
|
xv = self._split_heads(xv, self.num_key_value_heads) |
|
|
|
if self.num_heads != self.num_key_value_heads: |
|
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
|
|
og_dtype = xq.dtype |
|
|
|
if self.config.float32_attention: |
|
xq = xq.to(torch.float) |
|
xk = xk.to(torch.float) |
|
|
|
if self.config.attention_type == "direct": |
|
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk) |
|
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype) |
|
if self.attention_dropout is not None: |
|
attn_weights = self.attention_dropout(attn_weights) |
|
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv) |
|
|
|
elif self.config.attention_type == "sdpa": |
|
attn_output = F.scaled_dot_product_attention( |
|
xq.transpose(1, 2).contiguous(), |
|
xk.transpose(1, 2).contiguous(), |
|
xv.transpose(1, 2).contiguous(), |
|
is_causal=False, |
|
dropout_p=self.config.vision_backbone.attention_dropout |
|
).transpose(1, 2) |
|
else: |
|
raise NotImplementedError(self.config.attention_type) |
|
attn_output = attn_output.to(og_dtype) |
|
attn_output = self._merge_heads(attn_output) |
|
attn_output = self.wo(attn_output) |
|
attn_output = self.residual_dropout(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class MultiHeadAttentionPool(nn.Module): |
|
def __init__( |
|
self, |
|
config: FullMolmoConfig, |
|
factor: int = 1, |
|
use_bias: bool = True, |
|
dropout: bool = True, |
|
output_layer: bool = True, |
|
mean_residual: bool = False, |
|
query: str = "mean", |
|
is_vit_layer: Optional[bool] = True |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.factor = factor |
|
self.use_bias = use_bias |
|
self.dropout = dropout |
|
self.output_layer = output_layer |
|
self.mean_residual = mean_residual |
|
self.query = query |
|
|
|
v_cfg = config.vision_backbone |
|
input_dim = v_cfg.image_emb_dim |
|
self.embed_dim = v_cfg.image_emb_dim * factor |
|
self.num_heads = v_cfg.image_num_heads |
|
self.head_dim = v_cfg.image_head_dim * factor |
|
self.num_key_value_heads = v_cfg.image_num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.initializer_range = v_cfg.initializer_range |
|
|
|
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers) |
|
|
|
if query != "vector": |
|
self.wq = nn.Linear( |
|
nlayers * input_dim, |
|
self.num_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wk = nn.Linear( |
|
nlayers * input_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.wv = nn.Linear( |
|
nlayers * input_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
|
|
if query == "vector": |
|
self.attention_query = nn.Parameter( |
|
torch.zeros( |
|
1, self.num_key_value_heads * self.head_dim, device=config.init_device, |
|
), |
|
) |
|
|
|
if output_layer: |
|
self.wo = nn.Linear( |
|
self.num_heads * self.head_dim, |
|
self.embed_dim, |
|
bias=use_bias, |
|
device=config.init_device, |
|
) |
|
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1)) |
|
if dropout: |
|
self.residual_dropout = Dropout(v_cfg.residual_dropout) |
|
|
|
def reset_parameters(self): |
|
if self.query != "vector": |
|
nn.init.normal_(self.wq.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wk.weight, std=self.initializer_range) |
|
nn.init.normal_(self.wv.weight, std=self.initializer_range) |
|
if self.output_layer: |
|
nn.init.normal_(self.wo.weight, std=self.initializer_range) |
|
if self.use_bias: |
|
if self.query != "vector": |
|
nn.init.constant_(self.wq.bias, 0) |
|
nn.init.constant_(self.wk.bias, 0) |
|
nn.init.constant_(self.wv.bias, 0) |
|
if self.output_layer: |
|
nn.init.constant_(self.wo.bias, 0) |
|
if self.query == "vector": |
|
nn.init.normal_(self.attention_query, std=self.initializer_range) |
|
|
|
def _split_heads(self, hidden_states, num_heads): |
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) |
|
|
|
def _merge_heads(self, hidden_states): |
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) |
|
|
|
def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor: |
|
|
|
xk, xv = self.wk(inputs_kv), self.wv(inputs_kv) |
|
|
|
if self.query == "mean": |
|
inputs_q = inputs_kv.mean(dim=1, keepdim=True) |
|
xq = self.wq(inputs_q) |
|
elif self.query == "first": |
|
inputs_q = inputs_kv[:, :1] |
|
xq = self.wq(inputs_q) |
|
elif self.query == "vector": |
|
xq = self.attention_query.expand(inputs_kv.size(0), -1, -1) |
|
elif self.query == "constant": |
|
inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1]) |
|
xq = self.wq(inputs_q) |
|
else: |
|
raise ValueError(f"Unknown query type: {self.query}") |
|
|
|
xq = self._split_heads(xq, self.num_heads) |
|
xk = self._split_heads(xk, self.num_key_value_heads) |
|
xv = self._split_heads(xv, self.num_key_value_heads) |
|
|
|
if self.num_heads != self.num_key_value_heads: |
|
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
|
|
xq = xq.to(torch.float) |
|
xk = xk.to(torch.float) |
|
|
|
xq = xq / math.sqrt(xq.size(-1)) |
|
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk) |
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype) |
|
|
|
attn_weights = self.attention_dropout(attn_weights).to(xv.dtype) |
|
|
|
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv) |
|
attn_output = self._merge_heads(attn_output) |
|
if self.output_layer: |
|
attn_output = self.wo(attn_output) |
|
if self.dropout: |
|
attn_output = self.residual_dropout(attn_output) |
|
if self.mean_residual: |
|
attn_output += inputs_kv.mean(dim=1, keepdim=True) |
|
|
|
return attn_output |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config: FullMolmoConfig, input_dim: int, dropout: float = 0.0): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = ( |
|
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model |
|
) |
|
self.initializer_range = config.initializer_range |
|
|
|
self.w1 = nn.Linear( |
|
input_dim, |
|
self.hidden_size // 2, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
self.w2 = nn.Linear( |
|
self.hidden_size // 2, |
|
config.d_model, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
self.w3 = nn.Linear( |
|
input_dim, |
|
self.hidden_size // 2, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
|
|
self.act = Activation.build(config) |
|
self.dropout = Dropout(dropout) |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.w1.weight, std=self.initializer_range) |
|
nn.init.normal_(self.w2.weight, std=self.initializer_range) |
|
nn.init.normal_(self.w3.weight, std=self.initializer_range) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.w2(self.act(self.w1(x), self.w3(x))) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class Residual(nn.Module): |
|
def __init__(self, submodule: nn.Module): |
|
super().__init__() |
|
self.submodule = submodule |
|
|
|
def reset_parameters(self): |
|
self.submodule.reset_parameters() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x + self.submodule(x) |
|
|
|
|
|
class OLMoVisionBackbone(nn.Module): |
|
def __init__(self, config: FullMolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
self.image_vit = VisionTransformer(config) |
|
|
|
input_dim: int = None |
|
self.image_pooling_2d: nn.Module = None |
|
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}: |
|
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False) |
|
input_dim = config.vision_backbone.image_emb_dim |
|
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide: |
|
cfg = deepcopy(config) |
|
cfg.vision_backbone.image_emb_dim *= 2 |
|
cfg.vision_backbone.image_head_dim *= 2 |
|
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False) |
|
input_dim = cfg.vision_backbone.image_emb_dim |
|
elif config.image_pooling_2d == ImagePooling2DType.attention_v2: |
|
assert config.vit_layers is not None |
|
use_bias = True |
|
dropout = True |
|
output_layer = True |
|
query = "mean" |
|
mean_residual = False |
|
factor = len(config.vit_layers) |
|
self.image_pooling_2d = MultiHeadAttentionPool( |
|
config, |
|
factor=factor, |
|
use_bias=use_bias, |
|
dropout=dropout, |
|
output_layer=output_layer, |
|
mean_residual=mean_residual, |
|
query=query, |
|
is_vit_layer=False, |
|
) |
|
input_dim = config.vision_backbone.image_emb_dim * factor |
|
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]: |
|
self.image_pooling_2d = None |
|
nlayers = 1 if config.vit_layers is None else len(config.vit_layers) |
|
input_dim = nlayers * config.vision_backbone.image_emb_dim |
|
else: |
|
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}") |
|
|
|
self.input_dim = input_dim |
|
|
|
|
|
if config.activation_type == ActivationType.swiglu: |
|
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu) |
|
elif config.activation_type == ActivationType.gelu: |
|
mlp_config = replace(config, activation_type=ActivationType.llama_geglu) |
|
else: |
|
mlp_config = config |
|
if config.image_projector == ImageProjectType.mlpx2: |
|
self.image_projector = nn.ModuleList( |
|
[MLP(mlp_config, input_dim), Residual(MLP(config, input_dim))] |
|
) |
|
elif config.image_projector == ImageProjectType.mlp: |
|
self.image_projector = MLP(mlp_config, input_dim) |
|
elif config.image_projector == ImageProjectType.linear: |
|
self.image_projector = nn.Linear( |
|
input_dim, |
|
config.d_model, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
else: |
|
raise NotImplementedError(f"Unknown image projector: {config.image_projector}") |
|
|
|
self.image_feature_dropout = Dropout(config.image_feature_dropout) |
|
|
|
def reset_parameters(self): |
|
if self.image_pooling_2d is not None: |
|
self.image_pooling_2d.reset_parameters() |
|
if self.config.image_projector == "2mlp": |
|
for module in self.image_projector: |
|
module.reset_parameters() |
|
elif self.config.image_projector == "linear": |
|
nn.init.xavier_uniform_(self.image_projector.weight) |
|
else: |
|
self.image_projector.reset_parameters() |
|
|
|
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
raise NotImplementedError |
|
|
|
|
|
class OLMoPretrainedVisionBackbone(OLMoVisionBackbone): |
|
def __init__(self, config: FullMolmoConfig): |
|
super().__init__(config) |
|
v_cfg = self.config.vision_backbone |
|
self.grad_checkpointing = False |
|
|
|
self.num_prefix_tokens = self.image_vit.num_prefix_tokens |
|
assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported" |
|
if config.use_cls_feature: |
|
assert self.num_prefix_tokens > 0, "The model does not have a CLS token" |
|
nlayers = 1 if config.vit_layers is None else len(config.vit_layers) |
|
self.cls_projector = nn.Linear( |
|
nlayers * v_cfg.image_emb_dim, |
|
self.input_dim, |
|
bias=False, |
|
device=config.init_device, |
|
) |
|
|
|
self.pad_embed = None |
|
if config.image_padding_embed: |
|
image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers) |
|
if config.image_padding_embed in ["pad_embed", "regress"]: |
|
self.pad_embed = nn.Parameter( |
|
torch.zeros((image_dim,), device=config.init_device)) |
|
elif config.image_padding_embed == "pad_and_partial_pad": |
|
self.pad_embed = nn.Parameter( |
|
torch.zeros((2, image_dim), device=config.init_device)) |
|
else: |
|
raise ValueError(config.image_padding_embed) |
|
|
|
def reset_parameters(self): |
|
super().reset_parameters() |
|
self.image_vit.reset_parameters() |
|
if self.config.use_cls_feature: |
|
nn.init.xavier_uniform_(self.cls_projector.weight) |
|
|
|
def encode_image(self, images: torch.Tensor) -> torch.Tensor: |
|
""" |
|
: param images: (batch_size, num_crops, num_patch, n_pixels) |
|
""" |
|
cfg = self.config |
|
v_cfg = self.config.vision_backbone |
|
B, T, N, D = images.shape |
|
|
|
mask = torch.all(images.view(B * T, N, D) != -1, dim=(1, 2), keepdim=True) |
|
|
|
|
|
|
|
images = images.view(B * T, N, D) |
|
image_features = self.image_vit(images) |
|
|
|
if cfg.vit_layers is not None: |
|
features = [] |
|
for layer in cfg.vit_layers: |
|
features.append(image_features[layer]) |
|
image_features = torch.cat(features, dim=-1) |
|
else: |
|
image_features = image_features[-1] |
|
|
|
cls_embed: torch.Tensor = None |
|
if self.num_prefix_tokens > 0: |
|
cls_embed = image_features[:, 0] |
|
image_features = image_features[:, 1:] |
|
|
|
image_features = image_features * mask |
|
image_features = image_features.view(B, T, N, -1) |
|
|
|
cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None |
|
|
|
return image_features, cls_embed |
|
|
|
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
cfg = self.config |
|
|
|
|
|
batch_size, num_image = images.shape[:2] |
|
image_features, cls_embed = self.encode_image(images) |
|
|
|
if cfg.image_padding_embed: |
|
assert image_masks is not None |
|
if cfg.image_padding_embed == "pad_embed": |
|
all_pad = (image_masks == 0).to(dtype=torch.float32) |
|
pad_embed = self.pad_embed[None, None, None, :] |
|
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1) |
|
elif cfg.image_padding_embed == "regress": |
|
pad_embed = self.pad_embed[None, None, None, :] |
|
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1) |
|
elif cfg.image_padding_embed == "pad_and_partial_pad": |
|
pad_embed = self.pad_embed[:, None, None, None, :] |
|
all_pad = image_masks == 0 |
|
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=torch.float32) |
|
all_pad = all_pad.to(dtype=torch.float32) |
|
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1) |
|
image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1) |
|
else: |
|
raise ValueError(cfg.image_padding_embed) |
|
|
|
image_features = self.image_feature_dropout(image_features) |
|
if cls_embed is not None: |
|
cls_embed = self.image_feature_dropout(cls_embed) |
|
|
|
image_features = image_features.reshape( |
|
(batch_size, num_image) + cfg.image_num_patch + (-1,), |
|
) |
|
|
|
if cfg.image_num_patch[0] % cfg.image_pooling_h == 1: |
|
|
|
image_features = F.pad( |
|
image_features, |
|
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0), |
|
) |
|
|
|
|
|
image_features = einops.rearrange( |
|
image_features, |
|
'b n (h dh) (w dw) c -> (b n h w) (dh dw) c', |
|
dh=cfg.image_pooling_h, |
|
dw=cfg.image_pooling_w, |
|
) |
|
|
|
if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq: |
|
query = image_features.mean(-2, keepdim=True) |
|
image_features = self.image_pooling_2d(query, image_features) |
|
elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}: |
|
if self.grad_checkpointing: |
|
from torch.utils.checkpoint import checkpoint |
|
image_features = checkpoint(self.image_pooling_2d, image_features[:, :1, :], image_features, use_reentrant=False) |
|
else: |
|
image_features = self.image_pooling_2d(image_features[:, :1, :], image_features) |
|
|
|
h, w = cfg.llm_patches_per_crop() |
|
image_features = image_features.reshape(batch_size, num_image, h * w, -1) |
|
|
|
|
|
if self.grad_checkpointing: |
|
from torch.utils.checkpoint import checkpoint |
|
image_features = checkpoint(self.image_projector, image_features, use_reentrant=False) |
|
else: |
|
image_features = self.image_projector(image_features) |
|
|
|
if self.config.use_cls_feature: |
|
raise NotImplementedError() |
|
|
|
|
|
|
|
return image_features, cls_embed |
|
|
|
|
|
class ModuleType(str, Enum): |
|
in_module = "in" |
|
out_module = "out" |
|
emb = "emb" |
|
final_out = "final_out" |
|
|
|
|
|
def init_weights( |
|
config: FullMolmoConfig, |
|
module: Union[nn.Linear, nn.Embedding], |
|
d: Optional[int] = None, |
|
layer_id: Optional[int] = None, |
|
std_factor: float = 1.0, |
|
type_of_module: Optional[ModuleType] = None, |
|
) -> None: |
|
d = d if d is not None else config.d_model |
|
std = config.init_std * std_factor |
|
if config.init_cutoff_factor is not None: |
|
cutoff_value = config.init_cutoff_factor * std |
|
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value) |
|
else: |
|
nn.init.normal_(module.weight, mean=0.0, std=std) |
|
|
|
|
|
class LlamaSwiGLU(nn.Module): |
|
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor: |
|
return F.silu(x1) * x2 |
|
|
|
@property |
|
def output_multiplier(self) -> float: |
|
return 0.5 |
|
|
|
|
|
class SwiGLU(nn.Module): |
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.silu(gate) * x |
|
|
|
@property |
|
def output_multiplier(self) -> float: |
|
return 0.5 |
|
|
|
|
|
class Activation(nn.Module): |
|
def __init__(self, config: FullMolmoConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
raise NotImplementedError |
|
|
|
@property |
|
def output_multiplier(self) -> float: |
|
raise NotImplementedError |
|
|
|
@classmethod |
|
def build(cls, config: FullMolmoConfig) -> 'Activation': |
|
if config.activation_type == "quick_gelu": |
|
return QuickGELU(config) |
|
elif config.activation_type == "gelu": |
|
return cast(Activation, GELU(approximate="none")) |
|
elif config.activation_type == "gelu_tanh": |
|
return cast(Activation, GELU(approximate="tanh")) |
|
elif config.activation_type == "relu": |
|
return cast(Activation, ReLU(inplace=False)) |
|
elif config.activation_type == "silu": |
|
return cast(Activation, SiLU(inplace=False)) |
|
|
|
|
|
|
|
|
|
elif config.activation_type == "llama_swiglu": |
|
return LlamaSwiGLU() |
|
elif config.activation_type == "swiglu": |
|
return SwiGLU() |
|
else: |
|
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'") |
|
|
|
|
|
class QuickGELU(Activation): |
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
class GELU(nn.GELU): |
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
class ReLU(nn.ReLU): |
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
class SiLU(nn.SiLU): |
|
@property |
|
def output_multiplier(self) -> float: |
|
return 1.0 |
|
|
|
|
|
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor: |
|
att_bias = torch.triu( |
|
torch.ones(seq_len, seq_len, device=device, dtype=torch.float), |
|
diagonal=1, |
|
) |
|
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min) |
|
return att_bias.view(1, 1, seq_len, seq_len) |
|
|
|
|
|
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor: |
|
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len: |
|
if causal_bias.device != device: |
|
causal_bias = causal_bias.to(device) |
|
cache["causal_attention_bias"] = causal_bias |
|
return causal_bias |
|
with torch.autocast(device.type, enabled=False): |
|
causal_bias = causal_attention_bias(seq_len, device) |
|
cache["causal_attention_bias"] = causal_bias |
|
return causal_bias |
|
|
|
|
|
class LayerNormBase(nn.Module): |
|
def __init__( |
|
self, |
|
config: MolmoConfig, |
|
*, |
|
size: Optional[int] = None, |
|
elementwise_affine: Optional[bool] = True, |
|
eps: float = 1e-05, |
|
weight_initializer: Optional[Callable] = torch.ones, |
|
bias_initializer: Optional[Callable] = torch.zeros, |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.eps = self.config.layer_norm_eps or eps |
|
self.normalized_shape = (size or config.d_model,) |
|
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine): |
|
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device)) |
|
use_bias = self.config.bias_for_layer_norm |
|
if use_bias is None: |
|
use_bias = self.config.include_bias |
|
if use_bias: |
|
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device)) |
|
else: |
|
self.register_parameter("bias", None) |
|
else: |
|
self.register_parameter("bias", None) |
|
self.register_parameter("weight", None) |
|
|
|
@classmethod |
|
def build(cls, config: FullMolmoConfig, size: Optional[int] = None, **kwargs): |
|
if config.layer_norm_type == "default": |
|
return LayerNorm(config, size=size, low_precision=False, **kwargs) |
|
elif config.layer_norm_type == "low_precision": |
|
return LayerNorm(config, size=size, low_precision=True, **kwargs) |
|
elif config.layer_norm_type == "rms": |
|
return RMSLayerNorm(config, size=size, **kwargs) |
|
else: |
|
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'") |
|
|
|
|
|
class RMSLayerNorm(LayerNormBase): |
|
""" |
|
RMS layer norm, a simplified :class:`LayerNorm` implementation |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: FullMolmoConfig, |
|
size: Optional[int] = None, |
|
elementwise_affine: Optional[bool] = None, |
|
eps: float = 1e-5, |
|
): |
|
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
with torch.autocast(enabled=False, device_type=x.device.type): |
|
og_dtype = x.dtype |
|
x = x.to(torch.float32) |
|
variance = x.pow(2).mean(-1, keepdim=True) |
|
x = x * torch.rsqrt(variance + self.eps) |
|
x = x.to(og_dtype) |
|
|
|
if self.weight is not None: |
|
if self.bias is not None: |
|
return self.weight * x + self.bias |
|
else: |
|
return self.weight * x |
|
else: |
|
return x |
|
|
|
|
|
class LayerNorm(LayerNormBase): |
|
""" |
|
The default :class:`LayerNorm` implementation which can optionally run in low precision. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: FullMolmoConfig, |
|
size: Optional[int] = None, |
|
low_precision: bool = False, |
|
elementwise_affine: Optional[bool] = None, |
|
eps: float = 1e-05, |
|
): |
|
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) |
|
self.low_precision = low_precision |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.low_precision: |
|
module_device = x.device |
|
downcast_x = self._cast_if_autocast_enabled(x) |
|
downcast_weight = ( |
|
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight |
|
) |
|
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias |
|
with torch.autocast(enabled=False, device_type=module_device.type): |
|
return F.layer_norm( |
|
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps |
|
) |
|
else: |
|
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps) |
|
|
|
|
|
class Molmo(nn.Module): |
|
def __init__(self, config: FullMolmoConfig, init_params: bool = True): |
|
super().__init__() |
|
self.config = config |
|
self.__cache = BufferCache() |
|
|
|
|
|
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size: |
|
if self.config.embedding_size < self.config.vocab_size: |
|
raise MolmoConfigurationError("embedding size should be at least as big as vocab size") |
|
elif self.config.embedding_size % 128 != 0: |
|
import warnings |
|
|
|
warnings.warn( |
|
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning |
|
) |
|
torch.backends.cuda.enable_flash_sdp(True) |
|
torch.backends.cuda.enable_mem_efficient_sdp(False) |
|
|
|
wte = None |
|
if self.config.additional_vocab_size is not None: |
|
wte = Embedding( |
|
config.embedding_size or config.vocab_size, |
|
config.additional_vocab_size, |
|
config.d_model, |
|
device=config.init_device, |
|
initializer_range=config.initializer_range, |
|
new_embed_initializer_range=config.new_embedding_init_range |
|
) |
|
else: |
|
wte=nn.Embedding( |
|
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device |
|
) |
|
|
|
self.transformer = nn.ModuleDict( |
|
dict( |
|
wte=wte, |
|
emb_drop=Dropout(config.embedding_dropout), |
|
ln_f=LayerNorm.build(config), |
|
) |
|
) |
|
|
|
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)] |
|
if self.config.block_group_size > 1: |
|
raise NotImplementedError() |
|
else: |
|
self.transformer.update({"blocks": nn.ModuleList(blocks)}) |
|
|
|
if not (self.config.alibi or self.config.rope): |
|
self.transformer.update( |
|
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)} |
|
) |
|
if not config.weight_tying: |
|
self.transformer.update( |
|
{ |
|
"ff_out": nn.Linear( |
|
config.d_model, |
|
config.embedding_size or config.vocab_size, |
|
bias=config.include_bias, |
|
device=config.init_device, |
|
) |
|
} |
|
) |
|
|
|
self.vision_backbone: Optional[OLMoVisionBackbone] = None |
|
if config.vision_backbone is not None: |
|
self.vision_backbone = OLMoPretrainedVisionBackbone(config) |
|
|
|
self.__num_fwd_flops: Optional[int] = None |
|
|
|
def reset_parameters(self): |
|
if self.vision_backbone is not None: |
|
self.vision_backbone.reset_parameters() |
|
self.reset_non_vision_parameters() |
|
|
|
def reset_non_vision_parameters(self): |
|
self.transformer.wte.reset_parameters() |
|
if hasattr(self.transformer.wte, "new_embedding"): |
|
nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range) |
|
|
|
if hasattr(self.transformer, "wpe"): |
|
nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0) |
|
|
|
self.transformer.ln_f.reset_parameters() |
|
|
|
if hasattr(self.transformer, "ff_out"): |
|
nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02) |
|
|
|
if self.config.block_group_size == 1: |
|
for block in self.transformer.blocks: |
|
block.reset_parameters() |
|
else: |
|
for block_group in self.transformer.block_groups: |
|
block_group.reset_parameters() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
input_embeddings: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
response_mask: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
image_input_idx: Optional[torch.Tensor] = None, |
|
subsegment_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
use_cache: bool = False, |
|
last_logits_only: bool = False, |
|
output_hidden_states: Optional[bool] = None, |
|
append_last_valid_logits: Optional[torch.Tensor] = None, |
|
) -> ModelOutput: |
|
""" |
|
:param input_ids: A tensor of shape `(batch_size, seq_len)`. |
|
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input |
|
embeddings. When provided, it is treated as the output of the input embedding layer. |
|
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates |
|
which input IDs are masked. A `1` value in the mask means that |
|
the corresponding input ID should *not* be ignored. A `0` means |
|
that the corresponding input ID is masked. |
|
|
|
This has the same meaning as the `attention_mask` in HuggingFace's `transformers` |
|
library. |
|
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`, |
|
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used |
|
to introduce causal or other biases. |
|
|
|
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]` |
|
indicates that the i-th element in the sequence is allowed to attend to the j-th |
|
element in the sequence. |
|
|
|
If the tensor is a float tensor, it will just be added to the attention |
|
scores before the softmax. |
|
|
|
The default is causal, which corresponds to a lower-diagonal byte matrix of ones. |
|
:param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates |
|
the response mask. A `1` value in the mask means that the corresponding token |
|
is a response token. A `0` means that the corresponding token is not |
|
a response token. |
|
:param past_key_values: Pre-computed keys and values for each attention block. |
|
Can be used to speed up sequential decoding. The `input_ids` which have |
|
their past given to this model should not be passed as `input_ids` as they have already been computed. |
|
:param use_cache: If `True`, return key and value tensors for each block. |
|
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence. |
|
This can speed up decoding when you only care about the next token. |
|
""" |
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else False |
|
|
|
if past_key_values: |
|
assert len(past_key_values) == self.config.n_layers |
|
|
|
has_image = images is not None |
|
|
|
assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings." |
|
assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images." |
|
|
|
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2] |
|
if past_key_values is None: |
|
past_length = 0 |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if self.config.use_position_ids and attention_mask is None: |
|
attention_mask = input_ids != -1 |
|
|
|
if subsegment_ids is not None: |
|
assert not use_cache, "Subsegment_ids cannot be used with cache." |
|
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1) |
|
attention_mask = ( |
|
subsegment_mask.to(attention_mask.dtype) * |
|
attention_mask.unsqueeze(2) * |
|
attention_mask.unsqueeze(1)) |
|
if position_ids is None: |
|
raise ValueError(f"Positioned ids must be given if using subsegment_ids") |
|
else: |
|
if self.config.use_position_ids and position_ids is None: |
|
position_ids = torch.clamp( |
|
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, |
|
min=0, |
|
).broadcast_to((batch_size, attention_mask.shape[-1])) |
|
|
|
|
|
|
|
if input_ids is not None: |
|
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) |
|
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings |
|
|
|
num_image: Optional[int] = None |
|
if images is not None: |
|
|
|
|
|
image_features, cls_embed = self.vision_backbone(images, image_masks) |
|
num_image, num_patch = image_features.shape[1:3] |
|
assert image_input_idx.shape == (batch_size, num_image, num_patch) |
|
|
|
|
|
image_features = image_features.view(batch_size, num_image * num_patch, -1) |
|
image_input_idx = image_input_idx.view(batch_size, num_image * num_patch) |
|
|
|
valid = image_input_idx >= 0 |
|
batch_idx = torch.arange(batch_size, device=x.device) |
|
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]]) |
|
|
|
|
|
image_features = image_features.to(x.device) |
|
|
|
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid] |
|
|
|
if self.config.use_cls_feature: |
|
x = torch.cat([x[:, :1], cls_embed, x[:, 1:-num_image]], dim=1) |
|
|
|
valid_images = torch.any( |
|
(image_input_idx >= 0).view(batch_size, num_image, num_patch), dim=-1 |
|
) |
|
valid_images = valid_images.to(attention_mask.dtype) |
|
attention_mask = torch.cat( |
|
[attention_mask[:, :1], valid_images, attention_mask[:, 1:-num_image]], |
|
dim=1, |
|
) |
|
position_ids = torch.clamp( |
|
torch.cumsum(attention_mask, dim=-1) - 1, |
|
min=0, |
|
).broadcast_to((batch_size, attention_mask.shape[-1])) |
|
|
|
if not (self.config.alibi or self.config.rope): |
|
|
|
|
|
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0) |
|
|
|
pos_emb = self.transformer.wpe(pos) |
|
x = pos_emb + x |
|
|
|
|
|
|
|
x = self.transformer.emb_drop(x) |
|
|
|
|
|
if self.config.normalize_input_embeds: |
|
x = x * (self.config.d_model ** 0.5) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
if len(attention_mask.shape) == 2: |
|
attention_mask = attention_mask[:, :past_length + seq_len] |
|
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :] |
|
else: |
|
attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min |
|
|
|
|
|
if ( |
|
attention_bias is not None |
|
or attention_mask is not None |
|
or self.config.alibi |
|
|
|
|
|
|
|
or past_key_values is not None |
|
): |
|
if attention_bias is None and self.config.alibi: |
|
attention_bias = get_causal_attention_bias( |
|
self.__cache, past_length + seq_len, x.device |
|
) + self.get_alibi_attention_bias(past_length + seq_len, x.device) |
|
elif attention_bias is None: |
|
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device) |
|
elif attention_bias.dtype in (torch.int8, torch.bool): |
|
attention_bias = attention_bias.to(dtype=torch.float) |
|
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min) |
|
|
|
|
|
mask_len = seq_len |
|
if attention_mask is not None: |
|
mask_len = attention_mask.shape[-1] |
|
elif past_key_values is not None: |
|
mask_len = past_key_values[0][0].shape[-2] + seq_len |
|
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float) |
|
|
|
|
|
if attention_mask is not None: |
|
attention_bias = attention_bias + attention_mask |
|
|
|
|
|
|
|
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False) |
|
|
|
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None |
|
|
|
|
|
all_hidden_states = [] |
|
|
|
|
|
if self.config.block_group_size == 1: |
|
for block_idx, block in enumerate(self.transformer.blocks): |
|
if output_hidden_states: |
|
|
|
all_hidden_states.append(x) |
|
|
|
layer_past = None if past_key_values is None else past_key_values[block_idx] |
|
x, cache = block(x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layer_past=layer_past, use_cache=use_cache) |
|
|
|
if attn_key_values is not None: |
|
assert cache is not None |
|
attn_key_values.append(cache) |
|
else: |
|
for group_idx, block_group in enumerate(self.transformer.block_groups): |
|
if output_hidden_states: |
|
|
|
all_hidden_states.append(x) |
|
|
|
layers_past = ( |
|
None |
|
if past_key_values is None |
|
else past_key_values[ |
|
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size |
|
] |
|
) |
|
x, cache = block_group( |
|
x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layers_past=layers_past, use_cache=use_cache |
|
) |
|
if attn_key_values is not None: |
|
assert cache is not None |
|
attn_key_values.extend(cache) |
|
|
|
if images is not None and self.config.use_cls_feature: |
|
assert num_image is not None |
|
x = torch.cat( |
|
[x[:, :1], x[:, num_image+1:], torch.zeros_like(x[:, :num_image])], |
|
dim=1, |
|
) |
|
|
|
if last_logits_only: |
|
|
|
if append_last_valid_logits is not None: |
|
last_valid_output = x[ |
|
torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)] |
|
x = last_valid_output.unsqueeze(1) |
|
else: |
|
x = x[:, -1, :].unsqueeze(1) |
|
|
|
|
|
|
|
x = self.transformer.ln_f(x) |
|
if output_hidden_states: |
|
|
|
all_hidden_states.append(x) |
|
|
|
|
|
|
|
if self.config.weight_tying: |
|
logits = F.linear(x, self.transformer.wte.weight, None) |
|
else: |
|
logits = self.transformer.ff_out(x) |
|
if self.config.scale_logits: |
|
logits.mul_(1 / math.sqrt(self.config.d_model)) |
|
|
|
if not last_logits_only and append_last_valid_logits is not None: |
|
last_valid_logit = logits[ |
|
torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits] |
|
logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1) |
|
|
|
return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) |
|
|
|
|
|
class MolmoForCausalLM(PreTrainedModel): |
|
config_class = MolmoConfig |
|
base_model_prefix = "model" |
|
_no_split_modules = ["MolmoBlock"] |
|
|
|
def __init__(self, config: MolmoConfig, model: Optional[Molmo] = None, init_params: bool = False): |
|
super().__init__(config) |
|
|
|
if not model: |
|
full_config = FullMolmoConfig( |
|
attention_layer_norm=config.attention_layer_norm, |
|
image_padding_embed="pad_and_partial_pad", |
|
image_pooling_2d="attention-meanq", |
|
rope_impl="llama", |
|
vocab_size=config.vocab_size, |
|
max_sequence_length=config.max_position_embeddings, |
|
qkv_bias=config.qkv_bias, |
|
norm_after=config.norm_after, |
|
embedding_size=config.embedding_size, |
|
attention_type="sdpa", |
|
embedding_dropout=0, |
|
response_residual_dropout=0, |
|
attention_dropout=0, |
|
residual_dropout=0, |
|
rope=True, |
|
weight_tying=False, |
|
include_bias=False, |
|
d_model=config.hidden_size, |
|
mlp_hidden_size=config.intermediate_size, |
|
n_layers=config.num_hidden_layers, |
|
additional_vocab_size=128, |
|
n_heads=config.num_attention_heads, |
|
n_kv_heads=config.num_key_value_heads, |
|
rope_theta=config.rope_theta, |
|
layer_norm_eps=config.layer_norm_eps, |
|
layer_norm_type=config.layer_norm_type, |
|
pad_tokenizer=True, |
|
vit_layers=[-2, -9], |
|
vision_backbone=VisionBackboneConfig( |
|
image_model_type="openai", |
|
image_default_input_size=(336, 336), |
|
image_patch_size=14, |
|
image_pos_patch_size=14, |
|
image_emb_dim=1024, |
|
image_num_heads=16, |
|
image_num_key_value_heads=16, |
|
image_num_layers=23, |
|
image_head_dim=64, |
|
image_mlp_dim=4096, |
|
image_mlp_activations="quick_gelu", |
|
image_dropout_rate=0.0, |
|
image_num_pos=577, |
|
image_norm_eps=1e-5, |
|
attention_dropout=0.0, |
|
residual_dropout=0.0, |
|
initializer_range=0.02, |
|
) |
|
) |
|
self.model = Molmo(full_config, init_params=init_params) |
|
else: |
|
self.model = model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
response_mask: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
image_input_idx: Optional[torch.Tensor] = None, |
|
subsegment_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
loss_masks: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
last_logits_only: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
append_last_valid_logits: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[ |
|
Cache |
|
] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
if use_cache is None: |
|
use_cache = self.config.use_cache |
|
|
|
if output_attentions: |
|
raise ValueError("output_attentions is not yet supported in Molmo") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model.forward( |
|
input_ids=input_ids, |
|
input_embeddings=inputs_embeds, |
|
attention_mask=attention_mask, |
|
attention_bias=attention_bias, |
|
response_mask=response_mask, |
|
images=images, |
|
image_masks=image_masks, |
|
image_input_idx=image_input_idx, |
|
subsegment_ids=subsegment_ids, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
last_logits_only=last_logits_only, |
|
output_hidden_states=output_hidden_states, |
|
append_last_valid_logits=append_last_valid_logits, |
|
) |
|
|
|
logits = outputs.logits |
|
hidden_states = outputs.hidden_states |
|
|
|
loss = None |
|
if labels is not None: |
|
if loss_masks is not None: |
|
loss_masks = loss_masks * (loss_masks > 0) |
|
batch_size_in_tokens = max(loss_masks.sum().item(), 1) |
|
labels = labels.long() |
|
labels.masked_fill_(~(loss_masks > 0), -100) |
|
labels = labels.view(-1) |
|
logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1)) |
|
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none') |
|
loss = loss_fct(logits_for_loss, labels) |
|
loss = loss.view(input_ids.shape[0], -1) |
|
loss = loss * loss_masks |
|
loss = loss.sum() / batch_size_in_tokens |
|
use_zloss = getattr(self.config, "softmax_auxiliary_loss", False) |
|
if use_zloss: |
|
z_squared = logits_for_loss.logsumexp(-1).pow(2) |
|
z_loss = self.config.softmax_auxiliary_loss_scale * z_squared |
|
z_loss = z_loss.view(input_ids.shape[0], -1) |
|
z_loss = z_loss * loss_masks |
|
z_loss = z_loss.sum() / batch_size_in_tokens |
|
loss += z_loss |
|
else: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.embedding_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.attn_key_values, |
|
hidden_states=hidden_states, |
|
) |
|
|
|
def can_generate(self) -> bool: |
|
return True |
|
|
|
@torch.no_grad() |
|
def generate_from_batch( |
|
self, |
|
batch: Dict[str, Any], |
|
generation_config: Optional[GenerationConfig] = None, |
|
**kwargs, |
|
): |
|
if generation_config is not None: |
|
assert generation_config.use_cache |
|
|
|
images = batch.get("images") |
|
image_masks = batch.get("image_masks") |
|
image_input_idx = batch.get("image_input_idx") |
|
|
|
|
|
input_ids = batch["input_ids"] |
|
batch_size, seq_len = input_ids.shape |
|
attention_mask = batch.get("attention_mask", None) |
|
max_new_tokens = generation_config.max_new_tokens |
|
assert max_new_tokens is not None |
|
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len |
|
position_ids: Optional[torch.Tensor] = None |
|
append_last_valid_logits: Optional[torch.Tensor] = None |
|
if self.config.use_position_ids and attention_mask is None: |
|
attention_mask = input_ids != -1 |
|
position_ids = torch.clamp( |
|
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, |
|
min=0 |
|
) |
|
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1 |
|
attention_mask = torch.cat( |
|
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))], |
|
dim=1, |
|
) |
|
if attention_mask is not None: |
|
assert attention_mask.shape == (batch_size, mask_len) |
|
|
|
out = super().generate( |
|
batch["input_ids"], |
|
generation_config, |
|
attention_mask=attention_mask, |
|
images=images, |
|
image_masks=image_masks, |
|
image_input_idx=image_input_idx, |
|
position_ids=position_ids, |
|
append_last_valid_logits=append_last_valid_logits, |
|
**kwargs, |
|
) |
|
|
|
return out |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs |
|
): |
|
if past_key_values: |
|
|
|
input_ids = input_ids[:, -1:] |
|
|
|
if self.config.use_position_ids: |
|
attention_mask = kwargs.get("attention_mask") |
|
images = kwargs.get("images") |
|
image_masks = kwargs.get("image_masks") |
|
image_input_idx = kwargs.get("image_input_idx") |
|
position_ids = kwargs.get("position_ids") |
|
append_last_valid_logits = kwargs.get("append_last_valid_logits") |
|
model_inputs = { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": True, |
|
"last_logits_only": True, |
|
} |
|
if past_key_values is None: |
|
model_inputs["images"] = images |
|
model_inputs["image_masks"] = image_masks |
|
model_inputs["image_input_idx"] = image_input_idx |
|
model_inputs["append_last_valid_logits"] = append_last_valid_logits |
|
else: |
|
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values} |
|
|
|
model_inputs.update(kwargs) |
|
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache) |
|
return model_inputs |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
num_new_tokens: int = 1, |
|
) -> Dict[str, Any]: |
|
if self.config.use_position_ids: |
|
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 |
|
if "append_last_valid_logits" in model_kwargs: |
|
del model_kwargs["append_last_valid_logits"] |
|
if "images" in model_kwargs: |
|
del model_kwargs["images"] |
|
del model_kwargs["image_masks"] |
|
del model_kwargs["image_input_idx"] |
|
cache_name, cache = super()._extract_past_from_model_output(outputs) |
|
model_kwargs[cache_name] = cache |
|
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens |
|
return model_kwargs |
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.model.transformer.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module): |
|
self.model.transformer.wte = value |
|
|
|
def get_output_embeddings(self): |
|
if self.config.weight_tying: |
|
return self.model.transformer.wte |
|
else: |
|
return self.model.transformer.ff_out |
|
|
|
def set_output_embeddings(self, value: torch.nn.Module): |
|
if self.config.weight_tying: |
|
self.model.transformer.wte = value |
|
else: |
|
self.model.transformer.ff_out = value |
|
|
|
def tie_weights(self): |
|
""" |
|
This function is intentionally left as a no-op. |
|
|
|
Weight tying is handled as follows: |
|
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration. |
|
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`. |
|
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled. |
|
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method. |
|
|
|
Therefore, there is no need to explicitly tie the weights in this function. |
|
""" |
|
pass |
|
|
|
def resize_token_embeddings( |
|
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None |
|
) -> torch.nn.Embedding: |
|
""" |
|
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`. |
|
|
|
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. |
|
|
|
Arguments: |
|
new_num_tokens (`int`, *optional*): |
|
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized |
|
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just |
|
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything. |
|
pad_to_multiple_of (`int`, *optional*): |
|
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to |
|
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`. |
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more |
|
details about this, or help on choosing the correct value for resizing, refer to this guide: |
|
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc |
|
|
|
Return: |
|
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. |
|
|
|
Note: |
|
This method differs from the base class implementation by resizing the `embedding_size` attribute of the |
|
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size` |
|
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token |
|
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary. |
|
""" |
|
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
if new_num_tokens is None and pad_to_multiple_of is None: |
|
return model_embeds |
|
|
|
|
|
self.config.embedding_size = model_embeds.weight.shape[0] |
|
self.model.config.embedding_size = model_embeds.weight.shape[0] |
|
|
|
|
|
if self.config.embedding_size < self.config.vocab_size: |
|
warning_message = ( |
|
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size " |
|
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary " |
|
"size is less than or equal to the new token embedding size." |
|
) |
|
log.warning(warning_message) |
|
|
|
|
|
self.tie_weights() |
|
|
|
return model_embeds |
|
|
|
|
|
|
|
AutoModelForCausalLM.register(MolmoConfig, MolmoForCausalLM) |