jacobmorrison commited on
Commit
6dc0b1c
1 Parent(s): 1548cdc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +166 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.1
3
+ language:
4
+ - en
5
+ pipeline_tag: text-classification
6
+ datasets:
7
+ - allenai/llama-3.1-tulu-3-8b-preference-mixture
8
+ base_model:
9
+ - allenai/Llama-3.1-Tulu-3-8B-SFT
10
+ ---
11
+
12
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu3/Tulu3-logo.png" alt="Tulu 3 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
13
+
14
+ # Llama-3.1-Tulu-3-8B-RM
15
+
16
+ Tülu3 is a leading instruction following model family, offering fully open-source data, code, and recipes designed to serve as a comprehensive guide for modern post-training techniques.
17
+ Tülu3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
18
+
19
+ ## Model description
20
+
21
+ - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
22
+ - **Language(s) (NLP):** Primarily English
23
+ - **License:** Llama 3.1 Community License Agreement
24
+ - **Finetuned from model:** allenai/Llama-3.1-Tulu-3-8B-SFT
25
+
26
+ ### Model Sources
27
+
28
+ - **Training Repository:** https://github.com/allenai/open-instruct
29
+ - **Eval Repository:** https://github.com/allenai/olmes
30
+ - **Paper:** https://allenai.org/papers/tulu-3-report.pdf (arXiv soon)
31
+ - **Demo:** https://playground.allenai.org/
32
+
33
+ ### Model Family
34
+
35
+ | **Stage** | **Llama 3.1 8B** | **Llama 3.1 70B** |
36
+ |----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
37
+ | **Base Model** | [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) |
38
+ | **SFT** | [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) | [allenai/Llama-3.1-Tulu-3-70B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT) |
39
+ | **DPO** | [allenai/Llama-3.1-Tulu-3-8B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO) | [allenai/Llama-3.1-Tulu-3-70B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO) |
40
+ | **Final Models (RLVR)** | [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) | [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) |
41
+ | **Reward Model (RM)**| [allenai/Llama-3.1-Tulu-3-8B-RM](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-RM) | (Same as 8B) |
42
+
43
+ ## Using the model
44
+
45
+ ### Loading with HuggingFace
46
+
47
+ To load the model with HuggingFace, use the following snippet:
48
+ ```
49
+ from transformers import AutoModelForSequenceClassification
50
+
51
+ tulu_model = AutoModelForSequenceClassification.from_pretrained("allenai/Llama-3.1-Tulu-3-8B-RM")
52
+ ```
53
+
54
+ ### Chat template
55
+
56
+ The chat template for our models is formatted as:
57
+ ```
58
+ <|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
59
+ ```
60
+ Or with new lines expanded:
61
+ ```
62
+ <|user|>
63
+ How are you doing?
64
+ <|assistant|>
65
+ I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
66
+ ```
67
+ It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
68
+
69
+ ### Bias, Risks, and Limitations
70
+
71
+ The Tülu3 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
72
+ It is also unknown what the size and composition of the corpus was used to train the base Llama 3.1 models, however it is likely to have included a mix of Web data and technical sources like books and code.
73
+ See the Falcon 180B model card for an example of this.
74
+
75
+
76
+ ## Performance
77
+
78
+ | Benchmark (eval) | Tülu 3 SFT 8B | Tülu 3 DPO 8B | Tülu 3 8B | Llama 3.1 8B Instruct | Qwen 2.5 7B Instruct | Magpie 8B | Gemma 2 9B Instruct | Ministral 8B Instruct |
79
+ |---------------------------------|----------------|----------------|------------|------------------------|----------------------|-----------|---------------------|-----------------------|
80
+ | **Avg.** | 60.4 | 64.4 | **64.8** | 62.2 | 57.8 | 44.7 | 55.2 | 58.3 |
81
+ | **MMLU (0 shot, CoT)** | 65.9 | 68.7 | 68.2 | 71.2 | **76.6** | 62.0 | 74.6 | 68.5 |
82
+ | **PopQA (15 shot)** | **29.3** | 29.3 | 29.1 | 20.2 | 18.1 | 22.5 | 28.3 | 20.2 |
83
+ | **TruthfulQA (6 shot)** | 46.8 | 56.1 | 55.0 | 55.1 | **63.1** | 57.0 | 61.4 | 55.5 |
84
+ | **BigBenchHard (3 shot, CoT)** | **67.9** | 65.8 | 66.0 | 62.8 | 21.7 | 0.9 | 2.5 | 56.2 |
85
+ | **DROP (3 shot)** | 61.3 | 62.5 | **62.6** | 61.5 | 54.4 | 49.4 | 58.8 | 56.2 |
86
+ | **MATH (4 shot CoT, Flex)** | 31.5 | 42.0 | **43.7** | 42.5 | 14.8 | 5.1 | 29.8 | 40.0 |
87
+ | **GSM8K (8 shot, CoT)** | 76.2 | 84.3 | **87.6** | 83.4 | 83.8 | 61.2 | 79.7 | 80.0 |
88
+ | **HumanEval (pass@10)** | 86.2 | 83.9 | 83.9 | 86.3 | **93.1** | 75.4 | 71.7 | 91.0 |
89
+ | **HumanEval+ (pass@10)** | 81.4 | 78.6 | 79.2 | 82.9 | **89.7** | 69.1 | 67.0 | 88.5 |
90
+ | **IFEval (prompt loose)** | 72.8 | 81.1 | **82.4** | 80.6 | 74.7 | 38.8 | 69.9 | 56.4 |
91
+ | **AlpacaEval 2 (LC % win)** | 12.4 | 33.5 | 34.5 | 24.2 | 29.0 | **49.0** | 43.7 | 31.4 |
92
+ | **Safety (6 task avg.)** | **93.1** | 87.2 | 85.5 | 75.2 | 75.0 | 46.4 | 75.5 | 56.2 |
93
+
94
+ | Benchmark (eval) | Tülu 3 70B SFT | Tülu 3 DPO 70B | Tülu 3 70B | Llama 3.1 70B Instruct | Qwen 2.5 72B Instruct | Hermes 3 Llama 3.1 70B | Nemotron Llama 3.1 70B |
95
+ |---------------------------------|-----------------|-----------------|-------------|-------------------------|-----------------------|------------------------|-------------------------|
96
+ | **Avg.** | 72.6 | 75.9 | **76.0** | 73.4 | 71.5 | 68.3 | 65.5 |
97
+ | **MMLU (0 shot, CoT)** | 78.9 | 83.3 | 83.1 | 85.3 | **85.5** | 80.4 | 83.8 |
98
+ | **PopQA (15 shot)** | **48.6** | 46.3 | 46.5 | 46.4 | 30.6 | 48.1 | 36.4 |
99
+ | **TruthfulQA (6 shot)** | 55.7 | 67.9 | 67.6 | 66.8 | **69.9** | 66.5 | 62.6 |
100
+ | **BigBenchHard (3 shot, CoT)** | **82.7** | 81.8 | 82.0 | 73.8 | 67.2 | 82.1 | 0.7 |
101
+ | **DROP (3 shot)** | **77.2** | 74.1 | 74.3 | 77.0 | 34.2 | 73.2 | 68.8 |
102
+ | **MATH (4 shot CoT, Flex)** | 53.7 | 62.3 | 63.0 | 56.4 | **74.3** | 41.9 | 55.0 |
103
+ | **GSM8K (8 shot, CoT)** | 91.1 | 93.5 | 93.5 | **93.7** | 89.5 | 90.0 | 84.7 |
104
+ | **HumanEval (pass@10)** | 92.9 | 92.4 | 92.4 | 93.6 | 94.0 | 89.6 | **94.1** |
105
+ | **HumanEval+ (pass@10)** | 87.3 | 88.4 | 88.0 | 89.5 | **90.8** | 85.9 | 85.5 |
106
+ | **IFEval (prompt loose)** | 82.1 | 82.6 | 83.2 | **88.0** | 87.6 | 76.0 | 79.9 |
107
+ | **AlpacaEval 2 (LC % win)** | 26.3 | 49.6 | 49.8 | 33.4 | 47.7 | 28.4 | **66.1** |
108
+ | **Safety (6 task avg.)** | **94.4** | 89.0 | 88.3 | 76.5 | 87.0 | 57.9 | 69.0 |
109
+
110
+
111
+ ## Hyperparamters
112
+
113
+ Reward Modeling:
114
+ - **Learning Rate**: 3E-6
115
+ - **Effective Batch Size:** 256
116
+ - **Max. Sequence Length:** 2048
117
+ - **Learning Rate Schedule:** Linear
118
+ - **Num. Epochs:** 1
119
+ - **Grad. Norm Threshold:** 1.0
120
+
121
+ ## License and use
122
+
123
+ All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
124
+ Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
125
+ Tülu3 is intended for research and educational use.
126
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
127
+
128
+ The models have been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms:
129
+ [Gemma Terms of Use](https://ai.google.dev/gemma/terms) and [Qwen License Agreement](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE) (models were improved using Qwen 2.5).
130
+
131
+
132
+ ## Citation
133
+
134
+ If Tülu3 or any of the related materials were helpful to your work, please cite:
135
+ ```
136
+ @article{lambert2024tulu3,
137
+ title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
138
+ author = {
139
+ Nathan Lambert and
140
+ Jacob Morrison and
141
+ Valentina Pyatkin and
142
+ Shengyi Huang and
143
+ Hamish Ivison and
144
+ Faeze Brahman and
145
+ Lester James V. Miranda and
146
+ Alisa Liu and
147
+ Nouha Dziri and
148
+ Shane Lyu and
149
+ Yuling Gu and
150
+ Saumya Malik and
151
+ Victoria Graf and
152
+ Jena D. Hwang and
153
+ Jiangjiang Yang and
154
+ Ronan Le Bras and
155
+ Oyvind Tafjord and
156
+ Chris Wilhelm and
157
+ Luca Soldaini and
158
+ Noah A. Smith and
159
+ Yizhong Wang and
160
+ Pradeep Dasigi and
161
+ Hannaneh Hajishirzi
162
+ },
163
+ year = {2024},
164
+ email = {tulu@allenai.org}
165
+ }
166
+ ```