allanjie's picture
Upload PPO LunarLander-v2 trained agent
a6eda04
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2372afee50>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2372afeee0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2372afef70>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2372b03040>",
"_build": "<function ActorCriticPolicy._build at 0x7f2372b030d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f2372b03160>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2372b031f0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f2372b03280>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2372b03310>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2372b033a0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2372b03430>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f2372afd540>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1672132157718910563,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5IDxSR4G7hf0RPLSPYjxVq8a8sGJEPQAAgD8AAIA/2qK4vcO9Nbodg3e4B0rDs7H2/jqkCo83AACAPwAAgD9z1Mu9FFqYugbG3zSwbC8wgZ35OlX3JbQAAIA/AACAPwZzgz70PWs/UmtsPe8+vr5JNiE+BC+nvQAAAAAAAAAAc6PZPdd4uD6QWli+tLumvjzxi72vILs9AAAAAAAAAADNHLk89kBHutrNGjoA44w1e4TTO8TkN7kAAIA/AACAP3OQvT0v+CU/FssXvnq/qr6u3DS9UybYvQAAAAAAAAAAMzOJuFxLUbpPOog6fXIsuTexPTsgNZO5AACAPwAAgD+zREu99sh7OeJryTtyrgY4MvomO8D2fzYAAAAAAAAAAAB4CT2POnW6oBMkO35KT75c4Zu8gDqtPQAAgD8AAAAAzWqJvIUTtrmiG0q8l5q7PLyK1DqzNGi8AACAPwAAgD9NwS+9vnWePR4Oxzxzjou+c/aTvHl0lT0AAAAAAAAAAEDqyr2F1p67k4Z9PhDPOb44DBi9gPchvwAAgD8AAIA/ZiMBPbhErjoeyEA6pN6KPKyCWTrm9FI6AAAAAAAAAAD9OZC+5SC8PuUYkT5boZ6+h096vYDtpz0AAAAAAAAAAAD4FztdbWs+isrYPZKzX75ItWo9kGNsPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7X4V4Ds7cUCUhpRSlIwBbJRNHgGMAXSUR0CRLpcyWRigdX2UKGgGaAloD0MIstZQai/3cUCUhpRSlGgVTTIBaBZHQJEv8C1Z1V51fZQoaAZoCWgPQwj9wFWewJdwQJSGlFKUaBVNHwFoFkdAkTEvP9kz43V9lChoBmgJaA9DCFvSUQ5mZWxAlIaUUpRoFU0lAWgWR0CRMreRxLkCdX2UKGgGaAloD0MI0Jfe/hygckCUhpRSlGgVTRQBaBZHQJEzy1eBxxV1fZQoaAZoCWgPQwjCE3r9yWdxQJSGlFKUaBVNXAJoFkdAkTSw9vCMxXV9lChoBmgJaA9DCHk7wmkBV3BAlIaUUpRoFU0oAWgWR0CRNRqlxffGdX2UKGgGaAloD0MI9N2tLFGOb0CUhpRSlGgVTR0BaBZHQJE1MFqzqr11fZQoaAZoCWgPQwiSWb3DLcZxQJSGlFKUaBVNJQFoFkdAkTWd/OMVDnV9lChoBmgJaA9DCHrFU480inFAlIaUUpRoFU0TAWgWR0CRNagYgq3FdX2UKGgGaAloD0MIwVjfwCQQc0CUhpRSlGgVTQABaBZHQJE2CzhP0qZ1fZQoaAZoCWgPQwi1/wHWKmJuQJSGlFKUaBVNNQFoFkdAkTZ2oBJZn3V9lChoBmgJaA9DCBn/PuMCyXFAlIaUUpRoFU2OAWgWR0CRNsqslsxgdX2UKGgGaAloD0MIAma+g5+hcECUhpRSlGgVTRoBaBZHQJE3OGahHsl1fZQoaAZoCWgPQwjzVfKxO3JyQJSGlFKUaBVNAgFoFkdAkTdEF0PpZHV9lChoBmgJaA9DCDLlQ1D16HJAlIaUUpRoFU0vAWgWR0CRN7J/G2kSdX2UKGgGaAloD0MIUu4+xwdSckCUhpRSlGgVTTsBaBZHQJE6YLRa5gB1fZQoaAZoCWgPQwgCEHf1qjptQJSGlFKUaBVNlwFoFkdAkTqL08NhE3V9lChoBmgJaA9DCC1dwTYiAnBAlIaUUpRoFU0qAWgWR0CROxz5oGpudX2UKGgGaAloD0MITbuYZrqzUUCUhpRSlGgVS9loFkdAkTyi4FzMinV9lChoBmgJaA9DCHjVA+YhGG9AlIaUUpRoFU0yAWgWR0CRPMrz5GjLdX2UKGgGaAloD0MI6dUApSH5cECUhpRSlGgVTQUBaBZHQJE9ADhcZ+B1fZQoaAZoCWgPQwhBR6taEnZyQJSGlFKUaBVNJAFoFkdAkT6C0rsjV3V9lChoBmgJaA9DCHWxaaUQrnBAlIaUUpRoFU0iAWgWR0CRPoNZNfw7dX2UKGgGaAloD0MIahg+IiZlbkCUhpRSlGgVTU8BaBZHQJE+2Pp6hQF1fZQoaAZoCWgPQwiM2ZJVUT1wQJSGlFKUaBVNFwFoFkdAkT+atDD0lXV9lChoBmgJaA9DCOjewyVHd3JAlIaUUpRoFU0+AWgWR0CRP9AXl8w6dX2UKGgGaAloD0MIxm8KK5WxcECUhpRSlGgVTRIBaBZHQJE/5/9YOlR1fZQoaAZoCWgPQwhl48EWe5ZwQJSGlFKUaBVNEgFoFkdAkT/y6lLvkXV9lChoBmgJaA9DCDIepRKe229AlIaUUpRoFU0qAWgWR0CRQRTDO1OTdX2UKGgGaAloD0MI+py7XW+WcUCUhpRSlGgVTVYBaBZHQJFBJCfHxSZ1fZQoaAZoCWgPQwiRXz/EhlZxQJSGlFKUaBVNeAFoFkdAkUFrylN1yXV9lChoBmgJaA9DCLywNVv5dG9AlIaUUpRoFU0AAWgWR0CRQxlLeyiVdX2UKGgGaAloD0MIED6UaImOcUCUhpRSlGgVTT8BaBZHQJFEoS+QEIR1fZQoaAZoCWgPQwiu00hL5QJvQJSGlFKUaBVNTQFoFkdAkUT3erMkhXV9lChoBmgJaA9DCHv18dC3sHBAlIaUUpRoFU0FAWgWR0CRRR4YaYNRdX2UKGgGaAloD0MIebDFbh/OcUCUhpRSlGgVTS8BaBZHQJFG2P91loV1fZQoaAZoCWgPQwj+YOC5N3txQJSGlFKUaBVNBwFoFkdAkUbhwMpgC3V9lChoBmgJaA9DCFGk+zmFYW5AlIaUUpRoFU0WAWgWR0CRR223KB/adX2UKGgGaAloD0MIR450BgZZcUCUhpRSlGgVTUwBaBZHQJFHiIHkcS51fZQoaAZoCWgPQwgJGjOJ+vhyQJSGlFKUaBVNEgFoFkdAkUhf029+PXV9lChoBmgJaA9DCJDAH36+snFAlIaUUpRoFU0wAWgWR0CRSJkCFK02dX2UKGgGaAloD0MIKxiV1AkRbkCUhpRSlGgVTRsBaBZHQJFI+0WuX/p1fZQoaAZoCWgPQwh7gy9MpntsQJSGlFKUaBVNKQFoFkdAkUlD1XeWOnV9lChoBmgJaA9DCAaAKm5cvW9AlIaUUpRoFU0rAWgWR0CRSWOiFj/ddX2UKGgGaAloD0MIibMiamI5cUCUhpRSlGgVTSEBaBZHQJFKRr433pR1fZQoaAZoCWgPQwgUsB2M2ANzQJSGlFKUaBVNLwFoFkdAkUqT/p+tsHV9lChoBmgJaA9DCOIGfH7Yp3JAlIaUUpRoFU0FAWgWR0CRS1iwSrYHdX2UKGgGaAloD0MIuRluwCe1cECUhpRSlGgVTVcBaBZHQJFfPLV4HHF1fZQoaAZoCWgPQwg7NZcbDBNuQJSGlFKUaBVNpAJoFkdAkXrzrZ8KHHV9lChoBmgJaA9DCGgfK/jttXFAlIaUUpRoFU3gAmgWR0CRiPIwudwvdX2UKGgGaAloD0MIhZZ1/xggcECUhpRSlGgVTesCaBZHQJGKoAYHgP51fZQoaAZoCWgPQwj9wFWeQCJlQJSGlFKUaBVN6ANoFkdAkZPAZTAFgXV9lChoBmgJaA9DCO7RG+4jhmJAlIaUUpRoFU3oA2gWR0CRlMOI68xsdX2UKGgGaAloD0MIKnEd44oFcECUhpRSlGgVTScDaBZHQJGVi51/2Cd1fZQoaAZoCWgPQwgHRIgr5/1jQJSGlFKUaBVN6ANoFkdAkZgj/lyR0XV9lChoBmgJaA9DCHb51od13WBAlIaUUpRoFU3oA2gWR0CRmDmnfl6rdX2UKGgGaAloD0MIW1zjM9mLXECUhpRSlGgVTegDaBZHQJGZH27FsHl1fZQoaAZoCWgPQwgQPL69a+teQJSGlFKUaBVN6ANoFkdAkZlNL6DXe3V9lChoBmgJaA9DCPaZsz7l4lBAlIaUUpRoFU3oA2gWR0CRmqc8kleGdX2UKGgGaAloD0MIGxAhrpy+WECUhpRSlGgVTegDaBZHQJGbATyrgfl1fZQoaAZoCWgPQwgzMzMzM5BZQJSGlFKUaBVN6ANoFkdAkZw3k5p8GHV9lChoBmgJaA9DCFKY9zjTBF1AlIaUUpRoFU3oA2gWR0CRnZg2606YdX2UKGgGaAloD0MItd0E37TKYECUhpRSlGgVTegDaBZHQJGeBxp+MIh1fZQoaAZoCWgPQwhYG2MnPO9kQJSGlFKUaBVN6ANoFkdAkZ/o60Y0mHV9lChoBmgJaA9DCD7qr1fYsGRAlIaUUpRoFU3oA2gWR0CRz8butwJgdX2UKGgGaAloD0MIDf0TXCwacUCUhpRSlGgVTc0CaBZHQJHaVyq+8Gt1fZQoaAZoCWgPQwjxDYXP1o1XQJSGlFKUaBVN6ANoFkdAkd0xNM495nV9lChoBmgJaA9DCCx96IJ6/WBAlIaUUpRoFU3oA2gWR0CR3rMKkVN6dX2UKGgGaAloD0MI2T15WKhmX0CUhpRSlGgVTegDaBZHQJHnH+VC5Vh1fZQoaAZoCWgPQwiKPEm6ZmVfQJSGlFKUaBVN6ANoFkdAkef65LAYYXV9lChoBmgJaA9DCGOcvwmFTl9AlIaUUpRoFU3oA2gWR0CR6LOlO45MdX2UKGgGaAloD0MIj3IwmwDgYECUhpRSlGgVTegDaBZHQJHrBM6BAfN1fZQoaAZoCWgPQwjMlqyKcNhlQJSGlFKUaBVN6ANoFkdAkesZpi7TUnV9lChoBmgJaA9DCKOutfepM2ZAlIaUUpRoFU3oA2gWR0CR6+z9jwx4dX2UKGgGaAloD0MIBWnGomm7YECUhpRSlGgVTegDaBZHQJHsF8BuGbl1fZQoaAZoCWgPQwgUdeYeEvBfQJSGlFKUaBVN6ANoFkdAke2kLQXyiHV9lChoBmgJaA9DCOokW11OlVxAlIaUUpRoFU3oA2gWR0CR7tOpsGgSdX2UKGgGaAloD0MIec4WEFqUYECUhpRSlGgVTegDaBZHQJHwOKLsKLN1fZQoaAZoCWgPQwhZ3H9kurxgQJSGlFKUaBVN6ANoFkdAkfC5EMLF43V9lChoBmgJaA9DCA9/TdaoxFxAlIaUUpRoFU3oA2gWR0CR8rGEwnIAdX2UKGgGaAloD0MIs5WX/E/jbkCUhpRSlGgVTQ4CaBZHQJIWv6guh9N1fZQoaAZoCWgPQwikbfyJSpxxQJSGlFKUaBVN0QJoFkdAkhsNyo4uLHV9lChoBmgJaA9DCBHg9C7eJ2FAlIaUUpRoFU3oA2gWR0CSILZF5OafdX2UKGgGaAloD0MIICV2be/DcECUhpRSlGgVTW8CaBZHQJIkDHXEqDt1fZQoaAZoCWgPQwg2d/S/3OViQJSGlFKUaBVN6ANoFkdAkinAh0QsgHV9lChoBmgJaA9DCLlUpS0uKGRAlIaUUpRoFU3oA2gWR0CSLFJcgQpXdX2UKGgGaAloD0MIoIobt5jaa0CUhpRSlGgVTXwCaBZHQJItQEW69TR1fZQoaAZoCWgPQwgDfSJPUgRwQJSGlFKUaBVNfQFoFkdAkjBCmEXcg3V9lChoBmgJaA9DCG+8OzLWHGNAlIaUUpRoFU3oA2gWR0CSNSQXAM2FdX2UKGgGaAloD0MI8DUEx2XRX0CUhpRSlGgVTegDaBZHQJI2pbqyGBZ1fZQoaAZoCWgPQwjQudv1Ul1iQJSGlFKUaBVN6ANoFkdAkjitdzGPxXV9lChoBmgJaA9DCHTsoBLXmF9AlIaUUpRoFU3oA2gWR0CSOL0CRwIddX2UKGgGaAloD0MI9RJjmf4dYUCUhpRSlGgVTegDaBZHQJI5c1aW5Yp1fZQoaAZoCWgPQwiKVu4FZpVdQJSGlFKUaBVN6ANoFkdAkjmZ0r9VFXV9lChoBmgJaA9DCB42kZmLR25AlIaUUpRoFU05AWgWR0CSPALeQ+2WdX2UKGgGaAloD0MIYoGv6NaMXUCUhpRSlGgVTegDaBZHQJI8MFJQLux1fZQoaAZoCWgPQwgAVHHjFn1gQJSGlFKUaBVN6ANoFkdAkj2M/dIoVnV9lChoBmgJaA9DCF6hD5axVmFAlIaUUpRoFU3oA2gWR0CSPgc8TzundX2UKGgGaAloD0MIL28O12qecECUhpRSlGgVTRoBaBZHQJI+q/qPfbd1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}