alkiskoudounas commited on
Commit
c569344
1 Parent(s): d8455e8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.15 +/- 1.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20c31b0ea2d4854272eecf088a3ddc63c70ac41c2e36de3aeb70645cc05acfb9
3
+ size 107991
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fea3e418a60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fea3e4198c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680765115191214537,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPF7bPraBgDyHjQs/PF7bPraBgDyHjQs/PF7bPraBgDyHjQs/PF7bPraBgDyHjQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgQC8P0YZwj9Mnm0/ybAFv51TNL+Bhrk+Ym3WPhS2oL/di+W+Md+aPypsBz8zAYu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTw8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTw8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTw8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.42845333 0.01568685 0.5451283 ]\n [0.42845333 0.01568685 0.5451283 ]\n [0.42845333 0.01568685 0.5451283 ]\n [0.42845333 0.01568685 0.5451283 ]]",
60
+ "desired_goal": "[[ 1.4687654 1.5163963 0.92819667]\n [-0.5222288 -0.70440084 0.3623543 ]\n [ 0.41880327 -1.2555566 -0.4483327 ]\n [ 1.2099363 0.5289942 -1.0859741 ]]",
61
+ "observation": "[[0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]\n [0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]\n [0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]\n [0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnyrsvTTgArzcwgc+Omv1vdvW0T0I0RI+nuiaPVdTA76kKY0+StnIPegKAL4O4yY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.11531567 -0.00798802 0.13257927]\n [-0.11983342 0.10246059 0.14337552]\n [ 0.07563899 -0.1282476 0.27570832]\n [ 0.0980707 -0.1250416 0.04074388]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqvHSTWIwD8CUhpRSlIwBbJRLMowBdJRHQKlKZfoA4n51fZQoaAZoCWgPQwh7gy9Mpormv5SGlFKUaBVLMmgWR0CpSgzuv2XcdX2UKGgGaAloD0MI6zao/dbuCsCUhpRSlGgVSzJoFkdAqUm2EkB0ZHV9lChoBmgJaA9DCDApPj4hO+S/lIaUUpRoFUsyaBZHQKlJYIoE0SB1fZQoaAZoCWgPQwgLfEW3XlP1v5SGlFKUaBVLMmgWR0CpS53fhuO0dX2UKGgGaAloD0MIhKCjVS0p8L+UhpRSlGgVSzJoFkdAqUtE3sHB13V9lChoBmgJaA9DCDHT9q+stOm/lIaUUpRoFUsyaBZHQKlK7h+fAbh1fZQoaAZoCWgPQwiPcjCbAMPiv5SGlFKUaBVLMmgWR0CpSphoM8YAdX2UKGgGaAloD0MIGysxz0paAsCUhpRSlGgVSzJoFkdAqUzAa5wwTXV9lChoBmgJaA9DCEpfCDnvP/i/lIaUUpRoFUsyaBZHQKlMZ5Y5ksl1fZQoaAZoCWgPQwhz9zk+Wpzgv5SGlFKUaBVLMmgWR0CpTBDZcs19dX2UKGgGaAloD0MI6+Oh726l8r+UhpRSlGgVSzJoFkdAqUu7EgntwHV9lChoBmgJaA9DCAN3oE559PO/lIaUUpRoFUsyaBZHQKlN4gKWszV1fZQoaAZoCWgPQwiVtyOcFrwGwJSGlFKUaBVLMmgWR0CpTYjlo11odX2UKGgGaAloD0MI/b/qyJHOBMCUhpRSlGgVSzJoFkdAqU0yABkqc3V9lChoBmgJaA9DCLDHREqzWQjAlIaUUpRoFUsyaBZHQKlM3FCswL51fZQoaAZoCWgPQwjn+6nx0k0OwJSGlFKUaBVLMmgWR0CpTvZFw1iwdX2UKGgGaAloD0MI8BMH0O976b+UhpRSlGgVSzJoFkdAqU6dNrTH83V9lChoBmgJaA9DCCbfbHNj+vq/lIaUUpRoFUsyaBZHQKlORm4iHIp1fZQoaAZoCWgPQwjA6V28H7fzv5SGlFKUaBVLMmgWR0CpTfC4rjHXdX2UKGgGaAloD0MIToBh+fNt8b+UhpRSlGgVSzJoFkdAqVAeyE+PinV9lChoBmgJaA9DCOnVAKWhxvm/lIaUUpRoFUsyaBZHQKlPxdWQwK11fZQoaAZoCWgPQwhxcVRuohbgv5SGlFKUaBVLMmgWR0CpT28GTs6adX2UKGgGaAloD0MIw6BMo8lF+b+UhpRSlGgVSzJoFkdAqU8ZXEIgNnV9lChoBmgJaA9DCK9BX3r7c/O/lIaUUpRoFUsyaBZHQKlRNNFBppN1fZQoaAZoCWgPQwj+1HjpJvH7v5SGlFKUaBVLMmgWR0CpUNuVHFxXdX2UKGgGaAloD0MI9WOT/Ii/A8CUhpRSlGgVSzJoFkdAqVCEiILw4XV9lChoBmgJaA9DCDtypDMw8vy/lIaUUpRoFUsyaBZHQKlQLw++ueV1fZQoaAZoCWgPQwjTiJl9HmP3v5SGlFKUaBVLMmgWR0CpUnEKVpsXdX2UKGgGaAloD0MIGyycpPkjDsCUhpRSlGgVSzJoFkdAqVIY31jAi3V9lChoBmgJaA9DCFosRfKVQBDAlIaUUpRoFUsyaBZHQKlRwi5/b0x1fZQoaAZoCWgPQwgHms+529UOwJSGlFKUaBVLMmgWR0CpUWymqHXVdX2UKGgGaAloD0MIgbT/Ada6FMCUhpRSlGgVSzJoFkdAqVOX8XN1Q3V9lChoBmgJaA9DCHNLqyFxD+2/lIaUUpRoFUsyaBZHQKlTP6w+t8x1fZQoaAZoCWgPQwh798d71aoHwJSGlFKUaBVLMmgWR0CpUumM4tHydX2UKGgGaAloD0MILgCN0qXfA8CUhpRSlGgVSzJoFkdAqVKU3Kji43V9lChoBmgJaA9DCD4D6s2oOfK/lIaUUpRoFUsyaBZHQKlVbgFX7tR1fZQoaAZoCWgPQwjjioujcpP7v5SGlFKUaBVLMmgWR0CpVRV9Wp6ydX2UKGgGaAloD0MI+5Rjsrg/9r+UhpRSlGgVSzJoFkdAqVS/dyksSXV9lChoBmgJaA9DCH3LnC6LieW/lIaUUpRoFUsyaBZHQKlUaqoZQ551fZQoaAZoCWgPQwjLLEKxFfQBwJSGlFKUaBVLMmgWR0CpV0yOJcgRdX2UKGgGaAloD0MIL96P2y8f77+UhpRSlGgVSzJoFkdAqVb0ebNKRXV9lChoBmgJaA9DCH3O3a6X5vy/lIaUUpRoFUsyaBZHQKlWnrAP/aR1fZQoaAZoCWgPQwhT6pJxjCT2v5SGlFKUaBVLMmgWR0CpVko4VARkdX2UKGgGaAloD0MI6GwBofWw9b+UhpRSlGgVSzJoFkdAqVk6qOtGNXV9lChoBmgJaA9DCFSthVloJwHAlIaUUpRoFUsyaBZHQKlY4sUZeiV1fZQoaAZoCWgPQwjRWzy850D6v5SGlFKUaBVLMmgWR0CpWI0YKpkxdX2UKGgGaAloD0MIk4ychT0t9b+UhpRSlGgVSzJoFkdAqVg4lv60pnV9lChoBmgJaA9DCKN06V+Syg/AlIaUUpRoFUsyaBZHQKlbJo6jnFJ1fZQoaAZoCWgPQwhh/Z/DfJkAwJSGlFKUaBVLMmgWR0CpWs6sZHd5dX2UKGgGaAloD0MIrFYm/FL/8r+UhpRSlGgVSzJoFkdAqVp4ymALA3V9lChoBmgJaA9DCFpmEYqtoO6/lIaUUpRoFUsyaBZHQKlaI/bj94x1fZQoaAZoCWgPQwjL94xEaIT3v5SGlFKUaBVLMmgWR0CpXMVEVnEmdX2UKGgGaAloD0MINgUyO4teAcCUhpRSlGgVSzJoFkdAqVxsMXrMT3V9lChoBmgJaA9DCJCfjVw35fu/lIaUUpRoFUsyaBZHQKlcFWGyon91fZQoaAZoCWgPQwj+utOdJ54HwJSGlFKUaBVLMmgWR0CpW7+otL+QdX2UKGgGaAloD0MInWUWodhqBMCUhpRSlGgVSzJoFkdAqV3d1GLDRHV9lChoBmgJaA9DCNzXgXNG1PW/lIaUUpRoFUsyaBZHQKldhNX5nDl1fZQoaAZoCWgPQwgoKEUr90ICwJSGlFKUaBVLMmgWR0CpXS5AhStOdX2UKGgGaAloD0MI3ZVdMLimB8CUhpRSlGgVSzJoFkdAqVzY5o4+83V9lChoBmgJaA9DCNRi8DDtewfAlIaUUpRoFUsyaBZHQKlfBpsXSBt1fZQoaAZoCWgPQwiM3NPVHQv7v5SGlFKUaBVLMmgWR0CpXq24mTkidX2UKGgGaAloD0MIkEqxo3Ho8b+UhpRSlGgVSzJoFkdAqV5W09hZyXV9lChoBmgJaA9DCHE8nwH1JgPAlIaUUpRoFUsyaBZHQKleATbnHNp1fZQoaAZoCWgPQwgfatswCsIFwJSGlFKUaBVLMmgWR0CpYBO5jH4odX2UKGgGaAloD0MIj3Ba8KKv/b+UhpRSlGgVSzJoFkdAqV+6xPfsNXV9lChoBmgJaA9DCPW52or9hQPAlIaUUpRoFUsyaBZHQKlfZNB4Uvh1fZQoaAZoCWgPQwjiy0QRUgcQwJSGlFKUaBVLMmgWR0CpXxAkLQXzdX2UKGgGaAloD0MI5UUm4Nc4FMCUhpRSlGgVSzJoFkdAqWEr/n4fwXV9lChoBmgJaA9DCMLaGDvh5fW/lIaUUpRoFUsyaBZHQKlg0vFm4Al1fZQoaAZoCWgPQwjymeyfpyEFwJSGlFKUaBVLMmgWR0CpYHwmeDnOdX2UKGgGaAloD0MIvfvjvWolAsCUhpRSlGgVSzJoFkdAqWAmZy+6AnV9lChoBmgJaA9DCIlDNpAudva/lIaUUpRoFUsyaBZHQKliSmelKsd1fZQoaAZoCWgPQwjgha3ZyosOwJSGlFKUaBVLMmgWR0CpYfEq+ajOdX2UKGgGaAloD0MIi4ujchOVCsCUhpRSlGgVSzJoFkdAqWGaR0U473V9lChoBmgJaA9DCMCw/Pm2oPy/lIaUUpRoFUsyaBZHQKlhRJcxCY11fZQoaAZoCWgPQwgnol9bPz34v5SGlFKUaBVLMmgWR0CpY4QBxPwedX2UKGgGaAloD0MISFLSw9Bq67+UhpRSlGgVSzJoFkdAqWMrIzWPLnV9lChoBmgJaA9DCJbnwd1Ze/G/lIaUUpRoFUsyaBZHQKli1GHYYix1fZQoaAZoCWgPQwhybhPulXn5v5SGlFKUaBVLMmgWR0CpYn7TUiIMdX2UKGgGaAloD0MIqTEh5pIq87+UhpRSlGgVSzJoFkdAqWSvfhuO0nV9lChoBmgJaA9DCAuW6gJeFhDAlIaUUpRoFUsyaBZHQKlkVoaDPGB1fZQoaAZoCWgPQwh+ObNdoQ/1v5SGlFKUaBVLMmgWR0CpY/++Eh7mdX2UKGgGaAloD0MItMh2vp/a+L+UhpRSlGgVSzJoFkdAqWOqTEBKc3V9lChoBmgJaA9DCOjB3Vm7rfi/lIaUUpRoFUsyaBZHQKll30f5k9V1fZQoaAZoCWgPQwhtjQjGwWXxv5SGlFKUaBVLMmgWR0CpZYZK3/gjdX2UKGgGaAloD0MIh/pd2JotA8CUhpRSlGgVSzJoFkdAqWUvj2i+L3V9lChoBmgJaA9DCEJ4tHHEmvm/lIaUUpRoFUsyaBZHQKlk2hOgxrV1fZQoaAZoCWgPQwhnRdREn+8AwJSGlFKUaBVLMmgWR0CpZweVkc0cdX2UKGgGaAloD0MInplgONcw97+UhpRSlGgVSzJoFkdAqWaunXNC7nV9lChoBmgJaA9DCGN9A5MbxeS/lIaUUpRoFUsyaBZHQKlmV8WsRxt1fZQoaAZoCWgPQwhhjbPpCKAFwJSGlFKUaBVLMmgWR0CpZgItcv/SdX2UKGgGaAloD0MIJJwWvOjr8L+UhpRSlGgVSzJoFkdAqWgk2zfJm3V9lChoBmgJaA9DCK0vEtpyrvW/lIaUUpRoFUsyaBZHQKlny+EAYHh1fZQoaAZoCWgPQwjysFBrmjf9v5SGlFKUaBVLMmgWR0CpZ3T06HTJdX2UKGgGaAloD0MIMsozL4ddCcCUhpRSlGgVSzJoFkdAqWcfYJ3PiXV9lChoBmgJaA9DCNy5MNKLugjAlIaUUpRoFUsyaBZHQKlpQ9YfW+Z1fZQoaAZoCWgPQwgJU5RL4xfwv5SGlFKUaBVLMmgWR0CpaOrYoRZmdX2UKGgGaAloD0MIgxQ8hVzJB8CUhpRSlGgVSzJoFkdAqWiUF6iTMnV9lChoBmgJaA9DCEROX8/XDALAlIaUUpRoFUsyaBZHQKloPnied091ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30f2705afb32a6051ef5cca5b8374a33d207b4c33685d18a595f3b2b84597f75
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c753bd9dbab0f844dd421dd59b5d74b1392ba050e0015c8f9d85d62bb870737
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fea3e418a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fea3e4198c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680765115191214537, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPF7bPraBgDyHjQs/PF7bPraBgDyHjQs/PF7bPraBgDyHjQs/PF7bPraBgDyHjQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgQC8P0YZwj9Mnm0/ybAFv51TNL+Bhrk+Ym3WPhS2oL/di+W+Md+aPypsBz8zAYu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTw8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTw8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTw8Xts+toGAPIeNCz9QXRQ8eL4lO41lPTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42845333 0.01568685 0.5451283 ]\n [0.42845333 0.01568685 0.5451283 ]\n [0.42845333 0.01568685 0.5451283 ]\n [0.42845333 0.01568685 0.5451283 ]]", "desired_goal": "[[ 1.4687654 1.5163963 0.92819667]\n [-0.5222288 -0.70440084 0.3623543 ]\n [ 0.41880327 -1.2555566 -0.4483327 ]\n [ 1.2099363 0.5289942 -1.0859741 ]]", "observation": "[[0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]\n [0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]\n [0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]\n [0.42845333 0.01568685 0.5451283 0.00905545 0.00252905 0.01155986]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnyrsvTTgArzcwgc+Omv1vdvW0T0I0RI+nuiaPVdTA76kKY0+StnIPegKAL4O4yY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11531567 -0.00798802 0.13257927]\n [-0.11983342 0.10246059 0.14337552]\n [ 0.07563899 -0.1282476 0.27570832]\n [ 0.0980707 -0.1250416 0.04074388]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqvHSTWIwD8CUhpRSlIwBbJRLMowBdJRHQKlKZfoA4n51fZQoaAZoCWgPQwh7gy9Mpormv5SGlFKUaBVLMmgWR0CpSgzuv2XcdX2UKGgGaAloD0MI6zao/dbuCsCUhpRSlGgVSzJoFkdAqUm2EkB0ZHV9lChoBmgJaA9DCDApPj4hO+S/lIaUUpRoFUsyaBZHQKlJYIoE0SB1fZQoaAZoCWgPQwgLfEW3XlP1v5SGlFKUaBVLMmgWR0CpS53fhuO0dX2UKGgGaAloD0MIhKCjVS0p8L+UhpRSlGgVSzJoFkdAqUtE3sHB13V9lChoBmgJaA9DCDHT9q+stOm/lIaUUpRoFUsyaBZHQKlK7h+fAbh1fZQoaAZoCWgPQwiPcjCbAMPiv5SGlFKUaBVLMmgWR0CpSphoM8YAdX2UKGgGaAloD0MIGysxz0paAsCUhpRSlGgVSzJoFkdAqUzAa5wwTXV9lChoBmgJaA9DCEpfCDnvP/i/lIaUUpRoFUsyaBZHQKlMZ5Y5ksl1fZQoaAZoCWgPQwhz9zk+Wpzgv5SGlFKUaBVLMmgWR0CpTBDZcs19dX2UKGgGaAloD0MI6+Oh726l8r+UhpRSlGgVSzJoFkdAqUu7EgntwHV9lChoBmgJaA9DCAN3oE559PO/lIaUUpRoFUsyaBZHQKlN4gKWszV1fZQoaAZoCWgPQwiVtyOcFrwGwJSGlFKUaBVLMmgWR0CpTYjlo11odX2UKGgGaAloD0MI/b/qyJHOBMCUhpRSlGgVSzJoFkdAqU0yABkqc3V9lChoBmgJaA9DCLDHREqzWQjAlIaUUpRoFUsyaBZHQKlM3FCswL51fZQoaAZoCWgPQwjn+6nx0k0OwJSGlFKUaBVLMmgWR0CpTvZFw1iwdX2UKGgGaAloD0MI8BMH0O976b+UhpRSlGgVSzJoFkdAqU6dNrTH83V9lChoBmgJaA9DCCbfbHNj+vq/lIaUUpRoFUsyaBZHQKlORm4iHIp1fZQoaAZoCWgPQwjA6V28H7fzv5SGlFKUaBVLMmgWR0CpTfC4rjHXdX2UKGgGaAloD0MIToBh+fNt8b+UhpRSlGgVSzJoFkdAqVAeyE+PinV9lChoBmgJaA9DCOnVAKWhxvm/lIaUUpRoFUsyaBZHQKlPxdWQwK11fZQoaAZoCWgPQwhxcVRuohbgv5SGlFKUaBVLMmgWR0CpT28GTs6adX2UKGgGaAloD0MIw6BMo8lF+b+UhpRSlGgVSzJoFkdAqU8ZXEIgNnV9lChoBmgJaA9DCK9BX3r7c/O/lIaUUpRoFUsyaBZHQKlRNNFBppN1fZQoaAZoCWgPQwj+1HjpJvH7v5SGlFKUaBVLMmgWR0CpUNuVHFxXdX2UKGgGaAloD0MI9WOT/Ii/A8CUhpRSlGgVSzJoFkdAqVCEiILw4XV9lChoBmgJaA9DCDtypDMw8vy/lIaUUpRoFUsyaBZHQKlQLw++ueV1fZQoaAZoCWgPQwjTiJl9HmP3v5SGlFKUaBVLMmgWR0CpUnEKVpsXdX2UKGgGaAloD0MIGyycpPkjDsCUhpRSlGgVSzJoFkdAqVIY31jAi3V9lChoBmgJaA9DCFosRfKVQBDAlIaUUpRoFUsyaBZHQKlRwi5/b0x1fZQoaAZoCWgPQwgHms+529UOwJSGlFKUaBVLMmgWR0CpUWymqHXVdX2UKGgGaAloD0MIgbT/Ada6FMCUhpRSlGgVSzJoFkdAqVOX8XN1Q3V9lChoBmgJaA9DCHNLqyFxD+2/lIaUUpRoFUsyaBZHQKlTP6w+t8x1fZQoaAZoCWgPQwh798d71aoHwJSGlFKUaBVLMmgWR0CpUumM4tHydX2UKGgGaAloD0MILgCN0qXfA8CUhpRSlGgVSzJoFkdAqVKU3Kji43V9lChoBmgJaA9DCD4D6s2oOfK/lIaUUpRoFUsyaBZHQKlVbgFX7tR1fZQoaAZoCWgPQwjjioujcpP7v5SGlFKUaBVLMmgWR0CpVRV9Wp6ydX2UKGgGaAloD0MI+5Rjsrg/9r+UhpRSlGgVSzJoFkdAqVS/dyksSXV9lChoBmgJaA9DCH3LnC6LieW/lIaUUpRoFUsyaBZHQKlUaqoZQ551fZQoaAZoCWgPQwjLLEKxFfQBwJSGlFKUaBVLMmgWR0CpV0yOJcgRdX2UKGgGaAloD0MIL96P2y8f77+UhpRSlGgVSzJoFkdAqVb0ebNKRXV9lChoBmgJaA9DCH3O3a6X5vy/lIaUUpRoFUsyaBZHQKlWnrAP/aR1fZQoaAZoCWgPQwhT6pJxjCT2v5SGlFKUaBVLMmgWR0CpVko4VARkdX2UKGgGaAloD0MI6GwBofWw9b+UhpRSlGgVSzJoFkdAqVk6qOtGNXV9lChoBmgJaA9DCFSthVloJwHAlIaUUpRoFUsyaBZHQKlY4sUZeiV1fZQoaAZoCWgPQwjRWzy850D6v5SGlFKUaBVLMmgWR0CpWI0YKpkxdX2UKGgGaAloD0MIk4ychT0t9b+UhpRSlGgVSzJoFkdAqVg4lv60pnV9lChoBmgJaA9DCKN06V+Syg/AlIaUUpRoFUsyaBZHQKlbJo6jnFJ1fZQoaAZoCWgPQwhh/Z/DfJkAwJSGlFKUaBVLMmgWR0CpWs6sZHd5dX2UKGgGaAloD0MIrFYm/FL/8r+UhpRSlGgVSzJoFkdAqVp4ymALA3V9lChoBmgJaA9DCFpmEYqtoO6/lIaUUpRoFUsyaBZHQKlaI/bj94x1fZQoaAZoCWgPQwjL94xEaIT3v5SGlFKUaBVLMmgWR0CpXMVEVnEmdX2UKGgGaAloD0MINgUyO4teAcCUhpRSlGgVSzJoFkdAqVxsMXrMT3V9lChoBmgJaA9DCJCfjVw35fu/lIaUUpRoFUsyaBZHQKlcFWGyon91fZQoaAZoCWgPQwj+utOdJ54HwJSGlFKUaBVLMmgWR0CpW7+otL+QdX2UKGgGaAloD0MInWUWodhqBMCUhpRSlGgVSzJoFkdAqV3d1GLDRHV9lChoBmgJaA9DCNzXgXNG1PW/lIaUUpRoFUsyaBZHQKldhNX5nDl1fZQoaAZoCWgPQwgoKEUr90ICwJSGlFKUaBVLMmgWR0CpXS5AhStOdX2UKGgGaAloD0MI3ZVdMLimB8CUhpRSlGgVSzJoFkdAqVzY5o4+83V9lChoBmgJaA9DCNRi8DDtewfAlIaUUpRoFUsyaBZHQKlfBpsXSBt1fZQoaAZoCWgPQwiM3NPVHQv7v5SGlFKUaBVLMmgWR0CpXq24mTkidX2UKGgGaAloD0MIkEqxo3Ho8b+UhpRSlGgVSzJoFkdAqV5W09hZyXV9lChoBmgJaA9DCHE8nwH1JgPAlIaUUpRoFUsyaBZHQKleATbnHNp1fZQoaAZoCWgPQwgfatswCsIFwJSGlFKUaBVLMmgWR0CpYBO5jH4odX2UKGgGaAloD0MIj3Ba8KKv/b+UhpRSlGgVSzJoFkdAqV+6xPfsNXV9lChoBmgJaA9DCPW52or9hQPAlIaUUpRoFUsyaBZHQKlfZNB4Uvh1fZQoaAZoCWgPQwjiy0QRUgcQwJSGlFKUaBVLMmgWR0CpXxAkLQXzdX2UKGgGaAloD0MI5UUm4Nc4FMCUhpRSlGgVSzJoFkdAqWEr/n4fwXV9lChoBmgJaA9DCMLaGDvh5fW/lIaUUpRoFUsyaBZHQKlg0vFm4Al1fZQoaAZoCWgPQwjymeyfpyEFwJSGlFKUaBVLMmgWR0CpYHwmeDnOdX2UKGgGaAloD0MIvfvjvWolAsCUhpRSlGgVSzJoFkdAqWAmZy+6AnV9lChoBmgJaA9DCIlDNpAudva/lIaUUpRoFUsyaBZHQKliSmelKsd1fZQoaAZoCWgPQwjgha3ZyosOwJSGlFKUaBVLMmgWR0CpYfEq+ajOdX2UKGgGaAloD0MIi4ujchOVCsCUhpRSlGgVSzJoFkdAqWGaR0U473V9lChoBmgJaA9DCMCw/Pm2oPy/lIaUUpRoFUsyaBZHQKlhRJcxCY11fZQoaAZoCWgPQwgnol9bPz34v5SGlFKUaBVLMmgWR0CpY4QBxPwedX2UKGgGaAloD0MISFLSw9Bq67+UhpRSlGgVSzJoFkdAqWMrIzWPLnV9lChoBmgJaA9DCJbnwd1Ze/G/lIaUUpRoFUsyaBZHQKli1GHYYix1fZQoaAZoCWgPQwhybhPulXn5v5SGlFKUaBVLMmgWR0CpYn7TUiIMdX2UKGgGaAloD0MIqTEh5pIq87+UhpRSlGgVSzJoFkdAqWSvfhuO0nV9lChoBmgJaA9DCAuW6gJeFhDAlIaUUpRoFUsyaBZHQKlkVoaDPGB1fZQoaAZoCWgPQwh+ObNdoQ/1v5SGlFKUaBVLMmgWR0CpY/++Eh7mdX2UKGgGaAloD0MItMh2vp/a+L+UhpRSlGgVSzJoFkdAqWOqTEBKc3V9lChoBmgJaA9DCOjB3Vm7rfi/lIaUUpRoFUsyaBZHQKll30f5k9V1fZQoaAZoCWgPQwhtjQjGwWXxv5SGlFKUaBVLMmgWR0CpZYZK3/gjdX2UKGgGaAloD0MIh/pd2JotA8CUhpRSlGgVSzJoFkdAqWUvj2i+L3V9lChoBmgJaA9DCEJ4tHHEmvm/lIaUUpRoFUsyaBZHQKlk2hOgxrV1fZQoaAZoCWgPQwhnRdREn+8AwJSGlFKUaBVLMmgWR0CpZweVkc0cdX2UKGgGaAloD0MInplgONcw97+UhpRSlGgVSzJoFkdAqWaunXNC7nV9lChoBmgJaA9DCGN9A5MbxeS/lIaUUpRoFUsyaBZHQKlmV8WsRxt1fZQoaAZoCWgPQwhhjbPpCKAFwJSGlFKUaBVLMmgWR0CpZgItcv/SdX2UKGgGaAloD0MIJJwWvOjr8L+UhpRSlGgVSzJoFkdAqWgk2zfJm3V9lChoBmgJaA9DCK0vEtpyrvW/lIaUUpRoFUsyaBZHQKlny+EAYHh1fZQoaAZoCWgPQwjysFBrmjf9v5SGlFKUaBVLMmgWR0CpZ3T06HTJdX2UKGgGaAloD0MIMsozL4ddCcCUhpRSlGgVSzJoFkdAqWcfYJ3PiXV9lChoBmgJaA9DCNy5MNKLugjAlIaUUpRoFUsyaBZHQKlpQ9YfW+Z1fZQoaAZoCWgPQwgJU5RL4xfwv5SGlFKUaBVLMmgWR0CpaOrYoRZmdX2UKGgGaAloD0MIgxQ8hVzJB8CUhpRSlGgVSzJoFkdAqWiUF6iTMnV9lChoBmgJaA9DCEROX8/XDALAlIaUUpRoFUsyaBZHQKloPnied091ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (393 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.148254325776361, "std_reward": 1.1111866861592947, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T08:17:34.147040"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f902be736b2309f4dcee493f9d15416f7462cac5ac451ff02aa089b407824412
3
+ size 3056