aljaziz commited on
Commit
662360a
1 Parent(s): f645b13

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - translation
5
+ - generated_from_trainer
6
+ datasets:
7
+ - kde4
8
+ metrics:
9
+ - bleu
10
+ model-index:
11
+ - name: marian-finetuned-kde4-en-to-ja
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: kde4
18
+ type: kde4
19
+ config: en-ja
20
+ split: train
21
+ args: en-ja
22
+ metrics:
23
+ - name: Bleu
24
+ type: bleu
25
+ value: 18.0601212472632
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # marian-finetuned-kde4-en-to-ja
32
+
33
+ This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on the kde4 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.9699
36
+ - Bleu: 18.0601
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 64
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 3
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.28.1
71
+ - Pytorch 2.3.0+cu118
72
+ - Datasets 2.19.0
73
+ - Tokenizers 0.13.3