alitavanaali commited on
Commit
ebad626
·
1 Parent(s): f80424d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -20
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9693877551020408
28
  - name: Recall
29
  type: recall
30
- value: 0.9693877551020408
31
  - name: F1
32
  type: f1
33
- value: 0.9693877551020408
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9987365761212887
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0085
47
- - Precision: 0.9694
48
- - Recall: 0.9694
49
- - F1: 0.9694
50
- - Accuracy: 0.9987
51
 
52
  ## Model description
53
 
@@ -78,21 +78,21 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 12.5 | 100 | 0.0094 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
82
- | No log | 25.0 | 200 | 0.0076 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
83
- | No log | 37.5 | 300 | 0.0079 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
84
- | No log | 50.0 | 400 | 0.0079 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
85
- | 0.0412 | 62.5 | 500 | 0.0080 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
86
- | 0.0412 | 75.0 | 600 | 0.0083 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
87
- | 0.0412 | 87.5 | 700 | 0.0083 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
88
- | 0.0412 | 100.0 | 800 | 0.0084 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
89
- | 0.0412 | 112.5 | 900 | 0.0084 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
90
- | 0.0005 | 125.0 | 1000 | 0.0085 | 0.9694 | 0.9694 | 0.9694 | 0.9987 |
91
 
92
 
93
  ### Framework versions
94
 
95
- - Transformers 4.27.0.dev0
96
  - Pytorch 1.13.1+cu116
97
  - Datasets 2.2.2
98
  - Tokenizers 0.13.2
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9626865671641791
28
  - name: Recall
29
  type: recall
30
+ value: 0.9772727272727273
31
  - name: F1
32
  type: f1
33
+ value: 0.9699248120300752
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9990407673860912
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0083
47
+ - Precision: 0.9627
48
+ - Recall: 0.9773
49
+ - F1: 0.9699
50
+ - Accuracy: 0.9990
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 8.33 | 100 | 0.0191 | 0.9338 | 0.9621 | 0.9478 | 0.9981 |
82
+ | No log | 16.67 | 200 | 0.0120 | 0.9412 | 0.9697 | 0.9552 | 0.9981 |
83
+ | No log | 25.0 | 300 | 0.0125 | 0.9412 | 0.9697 | 0.9552 | 0.9981 |
84
+ | No log | 33.33 | 400 | 0.0101 | 0.9412 | 0.9697 | 0.9552 | 0.9981 |
85
+ | 0.0527 | 41.67 | 500 | 0.0121 | 0.9412 | 0.9697 | 0.9552 | 0.9981 |
86
+ | 0.0527 | 50.0 | 600 | 0.0083 | 0.9627 | 0.9773 | 0.9699 | 0.9990 |
87
+ | 0.0527 | 58.33 | 700 | 0.0082 | 0.9627 | 0.9773 | 0.9699 | 0.9990 |
88
+ | 0.0527 | 66.67 | 800 | 0.0082 | 0.9627 | 0.9773 | 0.9699 | 0.9990 |
89
+ | 0.0527 | 75.0 | 900 | 0.0083 | 0.9627 | 0.9773 | 0.9699 | 0.9990 |
90
+ | 0.0006 | 83.33 | 1000 | 0.0083 | 0.9627 | 0.9773 | 0.9699 | 0.9990 |
91
 
92
 
93
  ### Framework versions
94
 
95
+ - Transformers 4.28.0.dev0
96
  - Pytorch 1.13.1+cu116
97
  - Datasets 2.2.2
98
  - Tokenizers 0.13.2