update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: bert-base-uncased-pretrain-finetuned-coqa-falttened
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# bert-base-uncased-pretrain-finetuned-coqa-falttened
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [alistvt/bert-base-uncased-pretrained-mlm-coqa-stories](https://huggingface.co/alistvt/bert-base-uncased-pretrained-mlm-coqa-stories) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 2.8655
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 16
|
37 |
+
- eval_batch_size: 16
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- num_epochs: 3
|
42 |
+
|
43 |
+
### Training results
|
44 |
+
|
45 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
46 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
47 |
+
| 3.2886 | 0.29 | 2000 | 3.0142 |
|
48 |
+
| 3.0801 | 0.59 | 4000 | 2.8347 |
|
49 |
+
| 2.9744 | 0.88 | 6000 | 2.7643 |
|
50 |
+
| 2.494 | 1.18 | 8000 | 2.7605 |
|
51 |
+
| 2.4417 | 1.47 | 10000 | 2.7790 |
|
52 |
+
| 2.4042 | 1.77 | 12000 | 2.7382 |
|
53 |
+
| 2.1285 | 2.06 | 14000 | 2.8588 |
|
54 |
+
| 2.0569 | 2.36 | 16000 | 2.8937 |
|
55 |
+
| 2.0794 | 2.65 | 18000 | 2.8511 |
|
56 |
+
| 2.0679 | 2.95 | 20000 | 2.8655 |
|
57 |
+
|
58 |
+
|
59 |
+
### Framework versions
|
60 |
+
|
61 |
+
- Transformers 4.15.0
|
62 |
+
- Pytorch 1.10.0+cu111
|
63 |
+
- Datasets 1.17.0
|
64 |
+
- Tokenizers 0.10.3
|