aliosmankaya
commited on
Commit
•
ac631f1
1
Parent(s):
b0de23a
Upload reg_arr_model_1_dim.ipynb
Browse files- reg_arr_model_1_dim.ipynb +413 -0
reg_arr_model_1_dim.ipynb
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "e1bdbd46-1f35-4373-80ec-727f0e26f009",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import numpy as np\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"from sklearn.datasets import load_iris\n",
|
13 |
+
"from sklearn.model_selection import train_test_split\n",
|
14 |
+
"from sklearn.linear_model import LinearRegression\n",
|
15 |
+
"from sklearn.metrics import accuracy_score\n",
|
16 |
+
"\n",
|
17 |
+
"import warnings\n",
|
18 |
+
"warnings.filterwarnings(\"ignore\")"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 2,
|
24 |
+
"id": "327dafe0-68d4-4200-a889-b03bc97a1057",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"iris = load_iris()"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 3,
|
34 |
+
"id": "5ced7579-bb9f-4a20-abe2-c0c258ef4073",
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"X = iris.data[:, :1]\n",
|
39 |
+
"y = iris.target"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 4,
|
45 |
+
"id": "50359601-4b0d-4a94-a1c8-44a833b8f4e5",
|
46 |
+
"metadata": {
|
47 |
+
"tags": []
|
48 |
+
},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 5,
|
57 |
+
"id": "17fc4619-c5c0-4beb-81df-81617b1c7a56",
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"data": {
|
62 |
+
"text/plain": [
|
63 |
+
"(array([[6.3],\n",
|
64 |
+
" [6.5],\n",
|
65 |
+
" [5.6],\n",
|
66 |
+
" [5.7],\n",
|
67 |
+
" [6.4]]),\n",
|
68 |
+
" array([1, 2, 1, 1, 2]))"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
"execution_count": 5,
|
72 |
+
"metadata": {},
|
73 |
+
"output_type": "execute_result"
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"source": [
|
77 |
+
"x_train[:5], y_train[:5]"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": 6,
|
83 |
+
"id": "510d7a07-7746-4305-96d6-a74bc5a7f144",
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"model = LinearRegression()"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": 7,
|
93 |
+
"id": "733f81f4-fc25-41a2-8c7d-e6e4abd70143",
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"data": {
|
98 |
+
"text/plain": [
|
99 |
+
"LinearRegression()"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
"execution_count": 7,
|
103 |
+
"metadata": {},
|
104 |
+
"output_type": "execute_result"
|
105 |
+
}
|
106 |
+
],
|
107 |
+
"source": [
|
108 |
+
"model.fit(x_train, y_train)"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 8,
|
114 |
+
"id": "267ed05e-7285-4873-ae8c-2396f986bf31",
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"y_pred = model.predict(x_test)"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 9,
|
124 |
+
"id": "0dd6f9d6-89d4-461f-9110-601d44126512",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [
|
127 |
+
{
|
128 |
+
"data": {
|
129 |
+
"text/plain": [
|
130 |
+
"array([1.22816565, 0.91925051, 2.46382623, 1.15093687, 1.76876716,\n",
|
131 |
+
" 0.68756415, 0.84202172, 1.84599594, 1.30539444, 0.99647929,\n",
|
132 |
+
" 1.5370808 , 0.22419143, 0.76479293, 0.30142022, 0.45587779])"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
"execution_count": 9,
|
136 |
+
"metadata": {},
|
137 |
+
"output_type": "execute_result"
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"source": [
|
141 |
+
"y_pred"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": 10,
|
147 |
+
"id": "6a65cd71-b625-4f31-894d-a4d0403fd1b1",
|
148 |
+
"metadata": {},
|
149 |
+
"outputs": [
|
150 |
+
{
|
151 |
+
"data": {
|
152 |
+
"text/plain": [
|
153 |
+
"array([1., 1., 2., 1., 2., 1., 1., 2., 1., 1., 2., 0., 1., 0., 0.])"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"execution_count": 10,
|
157 |
+
"metadata": {},
|
158 |
+
"output_type": "execute_result"
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"source": [
|
162 |
+
"y_pred = np.round(y_pred)\n",
|
163 |
+
"y_pred"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": 11,
|
169 |
+
"id": "ef5d8327-7ee8-43a6-b4f9-0785e8467d23",
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [
|
172 |
+
{
|
173 |
+
"data": {
|
174 |
+
"text/plain": [
|
175 |
+
"array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0])"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"execution_count": 11,
|
179 |
+
"metadata": {},
|
180 |
+
"output_type": "execute_result"
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"source": [
|
184 |
+
"y_test"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": 12,
|
190 |
+
"id": "b28aa4ac-87ab-45a4-b5c8-e7b125895c25",
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [
|
193 |
+
{
|
194 |
+
"data": {
|
195 |
+
"text/plain": [
|
196 |
+
"0.7333333333333333"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
"execution_count": 12,
|
200 |
+
"metadata": {},
|
201 |
+
"output_type": "execute_result"
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"source": [
|
205 |
+
"accuracy_score(y_test, np.round(y_pred))"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": 13,
|
211 |
+
"id": "d5cf8629-f623-4a3e-9400-8d7f6215383e",
|
212 |
+
"metadata": {},
|
213 |
+
"outputs": [],
|
214 |
+
"source": [
|
215 |
+
"from joblib import dump, load"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 14,
|
221 |
+
"id": "caa6d389-b358-4160-a342-215013c5b2d9",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"data": {
|
226 |
+
"text/plain": [
|
227 |
+
"['reg_arr_model_1_dim.joblib']"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
"execution_count": 14,
|
231 |
+
"metadata": {},
|
232 |
+
"output_type": "execute_result"
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"source": [
|
236 |
+
"dump(model, \"reg_arr_model_1_dim.joblib\")"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 15,
|
242 |
+
"id": "f0804a91-46d4-4cec-bd60-bb5f022443bf",
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [],
|
245 |
+
"source": [
|
246 |
+
"model = load(\"reg_arr_model_1_dim.joblib\")"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 16,
|
252 |
+
"id": "07584f03-f1da-4014-a539-ca0e033a6356",
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [
|
255 |
+
{
|
256 |
+
"data": {
|
257 |
+
"text/plain": [
|
258 |
+
"array([1.22816565])"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 16,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"model.predict(x_test[:1])"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 17,
|
273 |
+
"id": "06cf5cbb-0a96-4501-8fa6-bfc680d8aa20",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"import skops.hub_utils as hub_utils"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"execution_count": 18,
|
283 |
+
"id": "f4349089-88c9-49d2-8b65-351cabb74fd8",
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [
|
286 |
+
{
|
287 |
+
"data": {
|
288 |
+
"text/plain": [
|
289 |
+
"array([[6.1],\n",
|
290 |
+
" [5.7],\n",
|
291 |
+
" [7.7],\n",
|
292 |
+
" [6. ],\n",
|
293 |
+
" [6.8],\n",
|
294 |
+
" [5.4],\n",
|
295 |
+
" [5.6],\n",
|
296 |
+
" [6.9],\n",
|
297 |
+
" [6.2],\n",
|
298 |
+
" [5.8],\n",
|
299 |
+
" [6.5],\n",
|
300 |
+
" [4.8],\n",
|
301 |
+
" [5.5],\n",
|
302 |
+
" [4.9],\n",
|
303 |
+
" [5.1]])"
|
304 |
+
]
|
305 |
+
},
|
306 |
+
"execution_count": 18,
|
307 |
+
"metadata": {},
|
308 |
+
"output_type": "execute_result"
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"source": [
|
312 |
+
"x_test"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": 19,
|
318 |
+
"id": "a4294f1f-5eeb-460f-a872-ba487a229093",
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [],
|
321 |
+
"source": [
|
322 |
+
"!rm -rf /Users/macbookpro/MyProjects/dev/dst\n",
|
323 |
+
"!mkdir /Users/macbookpro/MyProjects/dev/dst"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"cell_type": "code",
|
328 |
+
"execution_count": 20,
|
329 |
+
"id": "41a49678-1a01-439d-8f92-29f1884e5f79",
|
330 |
+
"metadata": {},
|
331 |
+
"outputs": [],
|
332 |
+
"source": [
|
333 |
+
"hub_utils.init(\n",
|
334 |
+
" model=\"/Users/macbookpro/MyProjects/dev/reg_arr_model_1_dim.joblib\",\n",
|
335 |
+
" requirements=[\"scikit-learn\", \"numpy\"],\n",
|
336 |
+
" dst=\"/Users/macbookpro/MyProjects/dev/dst\",\n",
|
337 |
+
" task=\"tabular-classification\",\n",
|
338 |
+
" data=x_train[:3]\n",
|
339 |
+
")"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": 21,
|
345 |
+
"id": "fe1a1620-66e3-4543-a506-1195ac39831e",
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [],
|
348 |
+
"source": [
|
349 |
+
"from skops.card import metadata_from_config"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": 22,
|
355 |
+
"id": "9e0a6d81-e1c4-4a75-b510-772eb44e924d",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [
|
358 |
+
{
|
359 |
+
"data": {
|
360 |
+
"text/plain": [
|
361 |
+
"library_name: sklearn\n",
|
362 |
+
"tags:\n",
|
363 |
+
"- sklearn\n",
|
364 |
+
"- skops\n",
|
365 |
+
"- tabular-classification\n",
|
366 |
+
"widget:\n",
|
367 |
+
" structuredData:\n",
|
368 |
+
" x0:\n",
|
369 |
+
" - 6.3\n",
|
370 |
+
" - 6.5\n",
|
371 |
+
" - 5.6"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
"execution_count": 22,
|
375 |
+
"metadata": {},
|
376 |
+
"output_type": "execute_result"
|
377 |
+
}
|
378 |
+
],
|
379 |
+
"source": [
|
380 |
+
"metadata_from_config(\"/Users/macbookpro/MyProjects/dev/dst/config.json\")"
|
381 |
+
]
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"cell_type": "code",
|
385 |
+
"execution_count": null,
|
386 |
+
"id": "412fc8e8-ab28-44bf-88be-6cac61c168f1",
|
387 |
+
"metadata": {},
|
388 |
+
"outputs": [],
|
389 |
+
"source": []
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"metadata": {
|
393 |
+
"kernelspec": {
|
394 |
+
"display_name": "Python 3 (ipykernel)",
|
395 |
+
"language": "python",
|
396 |
+
"name": "python3"
|
397 |
+
},
|
398 |
+
"language_info": {
|
399 |
+
"codemirror_mode": {
|
400 |
+
"name": "ipython",
|
401 |
+
"version": 3
|
402 |
+
},
|
403 |
+
"file_extension": ".py",
|
404 |
+
"mimetype": "text/x-python",
|
405 |
+
"name": "python",
|
406 |
+
"nbconvert_exporter": "python",
|
407 |
+
"pygments_lexer": "ipython3",
|
408 |
+
"version": "3.9.15"
|
409 |
+
}
|
410 |
+
},
|
411 |
+
"nbformat": 4,
|
412 |
+
"nbformat_minor": 5
|
413 |
+
}
|