aliosmankaya commited on
Commit
ac631f1
1 Parent(s): b0de23a

Upload reg_arr_model_1_dim.ipynb

Browse files
Files changed (1) hide show
  1. reg_arr_model_1_dim.ipynb +413 -0
reg_arr_model_1_dim.ipynb ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "e1bdbd46-1f35-4373-80ec-727f0e26f009",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import numpy as np\n",
11
+ "import pandas as pd\n",
12
+ "from sklearn.datasets import load_iris\n",
13
+ "from sklearn.model_selection import train_test_split\n",
14
+ "from sklearn.linear_model import LinearRegression\n",
15
+ "from sklearn.metrics import accuracy_score\n",
16
+ "\n",
17
+ "import warnings\n",
18
+ "warnings.filterwarnings(\"ignore\")"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 2,
24
+ "id": "327dafe0-68d4-4200-a889-b03bc97a1057",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "iris = load_iris()"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": 3,
34
+ "id": "5ced7579-bb9f-4a20-abe2-c0c258ef4073",
35
+ "metadata": {},
36
+ "outputs": [],
37
+ "source": [
38
+ "X = iris.data[:, :1]\n",
39
+ "y = iris.target"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": 4,
45
+ "id": "50359601-4b0d-4a94-a1c8-44a833b8f4e5",
46
+ "metadata": {
47
+ "tags": []
48
+ },
49
+ "outputs": [],
50
+ "source": [
51
+ "x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": 5,
57
+ "id": "17fc4619-c5c0-4beb-81df-81617b1c7a56",
58
+ "metadata": {},
59
+ "outputs": [
60
+ {
61
+ "data": {
62
+ "text/plain": [
63
+ "(array([[6.3],\n",
64
+ " [6.5],\n",
65
+ " [5.6],\n",
66
+ " [5.7],\n",
67
+ " [6.4]]),\n",
68
+ " array([1, 2, 1, 1, 2]))"
69
+ ]
70
+ },
71
+ "execution_count": 5,
72
+ "metadata": {},
73
+ "output_type": "execute_result"
74
+ }
75
+ ],
76
+ "source": [
77
+ "x_train[:5], y_train[:5]"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": 6,
83
+ "id": "510d7a07-7746-4305-96d6-a74bc5a7f144",
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "model = LinearRegression()"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": 7,
93
+ "id": "733f81f4-fc25-41a2-8c7d-e6e4abd70143",
94
+ "metadata": {},
95
+ "outputs": [
96
+ {
97
+ "data": {
98
+ "text/plain": [
99
+ "LinearRegression()"
100
+ ]
101
+ },
102
+ "execution_count": 7,
103
+ "metadata": {},
104
+ "output_type": "execute_result"
105
+ }
106
+ ],
107
+ "source": [
108
+ "model.fit(x_train, y_train)"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": 8,
114
+ "id": "267ed05e-7285-4873-ae8c-2396f986bf31",
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "y_pred = model.predict(x_test)"
119
+ ]
120
+ },
121
+ {
122
+ "cell_type": "code",
123
+ "execution_count": 9,
124
+ "id": "0dd6f9d6-89d4-461f-9110-601d44126512",
125
+ "metadata": {},
126
+ "outputs": [
127
+ {
128
+ "data": {
129
+ "text/plain": [
130
+ "array([1.22816565, 0.91925051, 2.46382623, 1.15093687, 1.76876716,\n",
131
+ " 0.68756415, 0.84202172, 1.84599594, 1.30539444, 0.99647929,\n",
132
+ " 1.5370808 , 0.22419143, 0.76479293, 0.30142022, 0.45587779])"
133
+ ]
134
+ },
135
+ "execution_count": 9,
136
+ "metadata": {},
137
+ "output_type": "execute_result"
138
+ }
139
+ ],
140
+ "source": [
141
+ "y_pred"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": 10,
147
+ "id": "6a65cd71-b625-4f31-894d-a4d0403fd1b1",
148
+ "metadata": {},
149
+ "outputs": [
150
+ {
151
+ "data": {
152
+ "text/plain": [
153
+ "array([1., 1., 2., 1., 2., 1., 1., 2., 1., 1., 2., 0., 1., 0., 0.])"
154
+ ]
155
+ },
156
+ "execution_count": 10,
157
+ "metadata": {},
158
+ "output_type": "execute_result"
159
+ }
160
+ ],
161
+ "source": [
162
+ "y_pred = np.round(y_pred)\n",
163
+ "y_pred"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": 11,
169
+ "id": "ef5d8327-7ee8-43a6-b4f9-0785e8467d23",
170
+ "metadata": {},
171
+ "outputs": [
172
+ {
173
+ "data": {
174
+ "text/plain": [
175
+ "array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0])"
176
+ ]
177
+ },
178
+ "execution_count": 11,
179
+ "metadata": {},
180
+ "output_type": "execute_result"
181
+ }
182
+ ],
183
+ "source": [
184
+ "y_test"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": 12,
190
+ "id": "b28aa4ac-87ab-45a4-b5c8-e7b125895c25",
191
+ "metadata": {},
192
+ "outputs": [
193
+ {
194
+ "data": {
195
+ "text/plain": [
196
+ "0.7333333333333333"
197
+ ]
198
+ },
199
+ "execution_count": 12,
200
+ "metadata": {},
201
+ "output_type": "execute_result"
202
+ }
203
+ ],
204
+ "source": [
205
+ "accuracy_score(y_test, np.round(y_pred))"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "code",
210
+ "execution_count": 13,
211
+ "id": "d5cf8629-f623-4a3e-9400-8d7f6215383e",
212
+ "metadata": {},
213
+ "outputs": [],
214
+ "source": [
215
+ "from joblib import dump, load"
216
+ ]
217
+ },
218
+ {
219
+ "cell_type": "code",
220
+ "execution_count": 14,
221
+ "id": "caa6d389-b358-4160-a342-215013c5b2d9",
222
+ "metadata": {},
223
+ "outputs": [
224
+ {
225
+ "data": {
226
+ "text/plain": [
227
+ "['reg_arr_model_1_dim.joblib']"
228
+ ]
229
+ },
230
+ "execution_count": 14,
231
+ "metadata": {},
232
+ "output_type": "execute_result"
233
+ }
234
+ ],
235
+ "source": [
236
+ "dump(model, \"reg_arr_model_1_dim.joblib\")"
237
+ ]
238
+ },
239
+ {
240
+ "cell_type": "code",
241
+ "execution_count": 15,
242
+ "id": "f0804a91-46d4-4cec-bd60-bb5f022443bf",
243
+ "metadata": {},
244
+ "outputs": [],
245
+ "source": [
246
+ "model = load(\"reg_arr_model_1_dim.joblib\")"
247
+ ]
248
+ },
249
+ {
250
+ "cell_type": "code",
251
+ "execution_count": 16,
252
+ "id": "07584f03-f1da-4014-a539-ca0e033a6356",
253
+ "metadata": {},
254
+ "outputs": [
255
+ {
256
+ "data": {
257
+ "text/plain": [
258
+ "array([1.22816565])"
259
+ ]
260
+ },
261
+ "execution_count": 16,
262
+ "metadata": {},
263
+ "output_type": "execute_result"
264
+ }
265
+ ],
266
+ "source": [
267
+ "model.predict(x_test[:1])"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": 17,
273
+ "id": "06cf5cbb-0a96-4501-8fa6-bfc680d8aa20",
274
+ "metadata": {},
275
+ "outputs": [],
276
+ "source": [
277
+ "import skops.hub_utils as hub_utils"
278
+ ]
279
+ },
280
+ {
281
+ "cell_type": "code",
282
+ "execution_count": 18,
283
+ "id": "f4349089-88c9-49d2-8b65-351cabb74fd8",
284
+ "metadata": {},
285
+ "outputs": [
286
+ {
287
+ "data": {
288
+ "text/plain": [
289
+ "array([[6.1],\n",
290
+ " [5.7],\n",
291
+ " [7.7],\n",
292
+ " [6. ],\n",
293
+ " [6.8],\n",
294
+ " [5.4],\n",
295
+ " [5.6],\n",
296
+ " [6.9],\n",
297
+ " [6.2],\n",
298
+ " [5.8],\n",
299
+ " [6.5],\n",
300
+ " [4.8],\n",
301
+ " [5.5],\n",
302
+ " [4.9],\n",
303
+ " [5.1]])"
304
+ ]
305
+ },
306
+ "execution_count": 18,
307
+ "metadata": {},
308
+ "output_type": "execute_result"
309
+ }
310
+ ],
311
+ "source": [
312
+ "x_test"
313
+ ]
314
+ },
315
+ {
316
+ "cell_type": "code",
317
+ "execution_count": 19,
318
+ "id": "a4294f1f-5eeb-460f-a872-ba487a229093",
319
+ "metadata": {},
320
+ "outputs": [],
321
+ "source": [
322
+ "!rm -rf /Users/macbookpro/MyProjects/dev/dst\n",
323
+ "!mkdir /Users/macbookpro/MyProjects/dev/dst"
324
+ ]
325
+ },
326
+ {
327
+ "cell_type": "code",
328
+ "execution_count": 20,
329
+ "id": "41a49678-1a01-439d-8f92-29f1884e5f79",
330
+ "metadata": {},
331
+ "outputs": [],
332
+ "source": [
333
+ "hub_utils.init(\n",
334
+ " model=\"/Users/macbookpro/MyProjects/dev/reg_arr_model_1_dim.joblib\",\n",
335
+ " requirements=[\"scikit-learn\", \"numpy\"],\n",
336
+ " dst=\"/Users/macbookpro/MyProjects/dev/dst\",\n",
337
+ " task=\"tabular-classification\",\n",
338
+ " data=x_train[:3]\n",
339
+ ")"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "code",
344
+ "execution_count": 21,
345
+ "id": "fe1a1620-66e3-4543-a506-1195ac39831e",
346
+ "metadata": {},
347
+ "outputs": [],
348
+ "source": [
349
+ "from skops.card import metadata_from_config"
350
+ ]
351
+ },
352
+ {
353
+ "cell_type": "code",
354
+ "execution_count": 22,
355
+ "id": "9e0a6d81-e1c4-4a75-b510-772eb44e924d",
356
+ "metadata": {},
357
+ "outputs": [
358
+ {
359
+ "data": {
360
+ "text/plain": [
361
+ "library_name: sklearn\n",
362
+ "tags:\n",
363
+ "- sklearn\n",
364
+ "- skops\n",
365
+ "- tabular-classification\n",
366
+ "widget:\n",
367
+ " structuredData:\n",
368
+ " x0:\n",
369
+ " - 6.3\n",
370
+ " - 6.5\n",
371
+ " - 5.6"
372
+ ]
373
+ },
374
+ "execution_count": 22,
375
+ "metadata": {},
376
+ "output_type": "execute_result"
377
+ }
378
+ ],
379
+ "source": [
380
+ "metadata_from_config(\"/Users/macbookpro/MyProjects/dev/dst/config.json\")"
381
+ ]
382
+ },
383
+ {
384
+ "cell_type": "code",
385
+ "execution_count": null,
386
+ "id": "412fc8e8-ab28-44bf-88be-6cac61c168f1",
387
+ "metadata": {},
388
+ "outputs": [],
389
+ "source": []
390
+ }
391
+ ],
392
+ "metadata": {
393
+ "kernelspec": {
394
+ "display_name": "Python 3 (ipykernel)",
395
+ "language": "python",
396
+ "name": "python3"
397
+ },
398
+ "language_info": {
399
+ "codemirror_mode": {
400
+ "name": "ipython",
401
+ "version": 3
402
+ },
403
+ "file_extension": ".py",
404
+ "mimetype": "text/x-python",
405
+ "name": "python",
406
+ "nbconvert_exporter": "python",
407
+ "pygments_lexer": "ipython3",
408
+ "version": "3.9.15"
409
+ }
410
+ },
411
+ "nbformat": 4,
412
+ "nbformat_minor": 5
413
+ }