Update README.md
Browse files
README.md
CHANGED
@@ -22,20 +22,73 @@ Unlike the inpaint controlnets used for general scenarios, this model is fine-tu
|
|
22 |
|
23 |
<span style="width: 150px !important;display: inline-block;">`Foreground`<span> | <span style="width: 150px !important;display: inline-block;">`Mask`<span> | <span style="width: 150px !important;display: inline-block;">`w/o instance mask`<span> | <span style="width: 150px !important;display: inline-block;">`w/ instance mask`<span>
|
24 |
:--:|:--:|:--:|:--:
|
25 |
-
![images)](./images/inp_0.png) | ![images)](./images/inp_1.png) | ![images)](./images/
|
26 |
-
|
27 |
-
|
28 |
-
Using this ControlNet with a control weight of 0.5 may achieve better results.
|
29 |
|
30 |
## Usage with Diffusers
|
31 |
```python
|
32 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
33 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
controlnet = ControlNetModel.from_pretrained(
|
36 |
"alimama-creative/EcomXL_controlnet_inpaint", torch_dtype=torch.float16, use_safetensors=True
|
37 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
```
|
|
|
39 |
|
40 |
## Training details
|
41 |
In the first phase, the model was trained on 12M laion2B and internal source images with random masks for 20k steps. In the second phase, the model was trained on 3M e-commerce images with the instance mask for 20k steps.<br>
|
|
|
22 |
|
23 |
<span style="width: 150px !important;display: inline-block;">`Foreground`<span> | <span style="width: 150px !important;display: inline-block;">`Mask`<span> | <span style="width: 150px !important;display: inline-block;">`w/o instance mask`<span> | <span style="width: 150px !important;display: inline-block;">`w/ instance mask`<span>
|
24 |
:--:|:--:|:--:|:--:
|
25 |
+
![images)](./images/inp_0.png) | ![images)](./images/inp_1.png) | ![images)](./images/inp_2.png) | ![images)](./images/inp_3.png)
|
26 |
+
![images)](./images/inp1_0.png) | ![images)](./images/inp1_1.png) | ![images)](./images/inp1_2.png) | ![images)](./images/inp1_3.png)
|
27 |
+
![images)](./images/inp2_0.png) | ![images)](./images/inp2_1.png) | ![images)](./images/inp2_2.png) | ![images)](./images/inp2_3.png)
|
|
|
28 |
|
29 |
## Usage with Diffusers
|
30 |
```python
|
31 |
+
from diffusers import (
|
32 |
+
ControlNetModel,
|
33 |
+
StableDiffusionXLControlNetInpaintPipeline
|
34 |
+
)
|
35 |
+
from diffusers.utils import load_image
|
36 |
import torch
|
37 |
+
from PIL import Image
|
38 |
+
|
39 |
+
def make_inpaint_condition(init_image, mask_image):
|
40 |
+
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
|
41 |
+
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
|
42 |
+
|
43 |
+
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
|
44 |
+
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
|
45 |
+
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
|
46 |
+
init_image = torch.from_numpy(init_image)
|
47 |
+
return init_image
|
48 |
+
|
49 |
|
50 |
controlnet = ControlNetModel.from_pretrained(
|
51 |
"alimama-creative/EcomXL_controlnet_inpaint", torch_dtype=torch.float16, use_safetensors=True
|
52 |
)
|
53 |
+
|
54 |
+
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
|
55 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
56 |
+
controlnet=controlnet,
|
57 |
+
torch_dtype=torch.float16
|
58 |
+
)
|
59 |
+
|
60 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
61 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
62 |
+
pipe.enable_vae_slicing()
|
63 |
+
|
64 |
+
image = load_image(
|
65 |
+
"https://huggingface.co/alimama-creative/EcomXL_controlnet_inpaint/resolve/main/images/inp_0.png"
|
66 |
+
)
|
67 |
+
mask = load_image(
|
68 |
+
"https://huggingface.co/alimama-creative/EcomXL_controlnet_inpaint/resolve/main/images/inp_1.png"
|
69 |
+
)
|
70 |
+
mask = Image.fromarray(255 - np.array(mask))
|
71 |
+
|
72 |
+
control_image = make_inpaint_condition(img, mask)
|
73 |
+
|
74 |
+
prompt="a product on the table"
|
75 |
+
|
76 |
+
images = pipe(
|
77 |
+
prompt,
|
78 |
+
image=img,
|
79 |
+
mask_image=mask,
|
80 |
+
control_image=control_image,
|
81 |
+
controlnet_conditioning_scale=0.5,
|
82 |
+
guidance_scale=7,
|
83 |
+
strength=0.75,
|
84 |
+
width=1024,
|
85 |
+
height=1024,
|
86 |
+
).images[0]
|
87 |
+
|
88 |
+
image.save(f'test_inp.png')
|
89 |
+
|
90 |
```
|
91 |
+
The model exhibits good performance when the controlnet weight (controllet_condition_scale) is 0.5.
|
92 |
|
93 |
## Training details
|
94 |
In the first phase, the model was trained on 12M laion2B and internal source images with random masks for 20k steps. In the second phase, the model was trained on 3M e-commerce images with the instance mask for 20k steps.<br>
|