alihamedi's picture
Hope it gets to you
e2085b8 verified
raw
history blame
14.1 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ae38e5fc0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ae38e6050>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ae38e60e0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ae38e6170>",
"_build": "<function ActorCriticPolicy._build at 0x7f9ae38e6200>",
"forward": "<function ActorCriticPolicy.forward at 0x7f9ae38e6290>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9ae38e6320>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ae38e63b0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f9ae38e6440>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ae38e64d0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ae38e6560>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ae38e65f0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f9ae3a87d40>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1705579364791339124,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZWdD17JPI5LROONN6lCa1s5By8MKh/swAAgD8AAIA/M0+Iu+hQ0T6GGBk+fRgXvj8rlz0DoO68AAAAAAAAAADms7u97MnjueqsGDuT4Ac20C0tOabfL7oAAAAAAACAP7MUuz0psGa6LgjOuon9QbY8yEk7EzeuNQAAAAAAAIA/AMT0vPZMOLor4SA6XLhqte1aDzoy41u0AACAPwAAgD8arss99vxIug86KLsPIha2lc9ZO8z0MToAAIA/AAAAALOADT44qqm73bKEu8zmBzksEfa86cOkOgAAgD8AAIA/84+BPfacIbonUge5ghLIs/ujrrpwZx84AACAPwAAgD/N2HY9H8OIu70RDLrAtGw8xWCyPO1uTL0AAIA/AACAPwAQpDyPGmK6/oxIu8Cc9DZTVRA7w2JftgAAgD8AAIA/Zi2cvOFeg7pNFhA4+pMGM0HD5Dqfwie3AACAPwAAgD8AvLK7FoizP3Loer3Blhe+EcPNvBoxK70AAAAAAAAAABOnPL4gboY/7N+JPXWyeL5UfGy9sSatPQAAAAAAAAAAM4Y+va5LhrrGBWs54E9iNErdDTt+44i4AACAPwAAgD8AQL489sx+uuZk8zmRpE01fvVhO/w8DLkAAIA/AACAP5pl/byP5ke6yFoquKtzGrMsKtC6fVdJNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTCrxI8QqaMAWyUTegDjAF0lEdAkneXlr/KhnV9lChoBkdAX8oZ0jkdWGgHTegDaAhHQJJ57KMefZp1fZQoaAZHQFuP1klNUOxoB03oA2gIR0CSemdhRZU2dX2UKGgGR0BhazQAuIykaAdN6ANoCEdAknrJ9JBgNXV9lChoBkdAZUYoxYaHbmgHTegDaAhHQJKA/+wTufF1fZQoaAZHQF7/UbDMvAZoB03oA2gIR0CSiN9vS+g2dX2UKGgGR0Bfd+nhsImgaAdN6ANoCEdAkooS5I6KcnV9lChoBkdAZB6L1mJ3xGgHTegDaAhHQJKYvJgb6xh1fZQoaAZHQGLIrs8gZCRoB03oA2gIR0CSmhO+7Dl6dX2UKGgGR0BjptW0Z3s5aAdN6ANoCEdAkp9Iw7DEWXV9lChoBkdAY8UOwxFiKGgHTegDaAhHQJKgmgctGut1fZQoaAZHQGFOqG+K0lZoB03oA2gIR0CSqBYHxBmgdX2UKGgGR0BiOFrM1TBJaAdN6ANoCEdAkq3YMjNY83V9lChoBkdAbUDh3qzJIWgHTR8DaAhHQJK3ln/T9bZ1fZQoaAZHQGC65lOGj9JoB03oA2gIR0CS0tA3T/hmdX2UKGgGR0BixPbdrO7haAdN6ANoCEdAktUpQxesxXV9lChoBkdAYzEvX9R77mgHTegDaAhHQJLVY5Qxesx1fZQoaAZHQF1xZ3LV4HJoB03oA2gIR0CS3jGEf1YhdX2UKGgGR0BnAWGCZnctaAdN6ANoCEdAkt69vn8sMHV9lChoBkdAYgiBJZntfGgHTegDaAhHQJLfNBgNPP91fZQoaAZHQGHN5tm+TNdoB03oA2gIR0CS5jEpAlfJdX2UKGgGR0BlVYn4O+ZgaAdN6ANoCEdAku4/f4yoGnV9lChoBkdAVGLxH5Jsf2gHTegDaAhHQJLvmPU8V591fZQoaAZHQGIJnYxtYSxoB03oA2gIR0CS/izDn/1hdX2UKGgGR0BfFFjAi3XqaAdN6ANoCEdAkv9pcs189nV9lChoBkdAZORDmbLEDWgHTegDaAhHQJMETjvNNah1fZQoaAZHQGGK4ZMtbs5oB03oA2gIR0CTBZDl5nlGdX2UKGgGR0BkXt9+gDigaAdN6ANoCEdAkwwpZW7vonV9lChoBkdAX4ximVJL/WgHTegDaAhHQJMRcry1/lR1fZQoaAZHQHAZoNd7fHhoB02rAmgIR0CTFIYODrZ8dX2UKGgGR0BeFi6tknTiaAdN6ANoCEdAkxm7ZWaMJnV9lChoBkdAXFvQ4S6DoWgHTegDaAhHQJMf8aAFxGV1fZQoaAZHQGZfpPRArx1oB03oA2gIR0CTNgB0IToMdX2UKGgGR0BgkxMi8nNQaAdN6ANoCEdAkzY16JIlMXV9lChoBkdAYNe5eZ5Rj2gHTegDaAhHQJM9v3wkPc11fZQoaAZHQGQEbQkX1rZoB03oA2gIR0CTPqCkoF3ZdX2UKGgGR0BhpMIomXw9aAdN6ANoCEdAk0UJylvZRXV9lChoBkdAZQJCzkZJkGgHTegDaAhHQJNLl5iVjZt1fZQoaAZHQGHAGmk30f5oB03oA2gIR0CTTHSlWOp9dX2UKGgGR0BhPPVkMCtBaAdN6ANoCEdAk1hzGT9sJ3V9lChoBkdAYjTQJHAh0WgHTegDaAhHQJNZ2ZkTYd11fZQoaAZHQF3iJ79hqj9oB03oA2gIR0CTX0Nj9XLedX2UKGgGR0BmIycXm/34aAdN6ANoCEdAk2CWpQ1rI3V9lChoBkdAWWO9oN/e+GgHTegDaAhHQJNmcOCoS+R1fZQoaAZHQGGL71qWTotoB03oA2gIR0CTaukT6BRRdX2UKGgGR0Bj7HluFYdRaAdN6ANoCEdAk23Tl1bJOnV9lChoBkdAXAF9jPOY6WgHTegDaAhHQJNzOUs4DLd1fZQoaAZHQFxu2R7qptJoB03oA2gIR0CTeS9srNGFdX2UKGgGR0BgJI9Pk7wKaAdN6ANoCEdAk3tNwBHTZ3V9lChoBkdAYgOSq2jO9mgHTegDaAhHQJN7g2n889x1fZQoaAZHQGYk/x+az/poB03oA2gIR0CTl/5mh/RWdX2UKGgGR0Bb+pN9H+ZPaAdN6ANoCEdAk5kN0NjLCHV9lChoBkdAZuc4LCvX9WgHTegDaAhHQJOgRsKsuFp1fZQoaAZHQGSOAKv3ai9oB03oA2gIR0CTqCI3irDJdX2UKGgGR0Be+sAaNuLraAdN6ANoCEdAk6ktsFdLQHV9lChoBkdAcMM2CuloDmgHTZsBaAhHQJOur5zo2XN1fZQoaAZHQHCZdnoPkJdoB020A2gIR0CTsa+G47RwdX2UKGgGR0Bi7Zz3h4t6aAdN6ANoCEdAk7ZpQk5ZKXV9lChoBkdAZENFLnLaEmgHTegDaAhHQJO67DEWIoF1fZQoaAZHQGUr6EBbOeJoB03oA2gIR0CTvDUEPlMidX2UKGgGR0BfLOzIFNcoaAdN6ANoCEdAk8RhzmwJPnV9lChoBkdAYZfOM2m52GgHTegDaAhHQJPKBlg+hXd1fZQoaAZHQGABKs+3YthoB03oA2gIR0CTzQCv5gw5dX2UKGgGR0BgMH/1g6U8aAdN6ANoCEdAk9JVi4J/onV9lChoBkdAZ0ory1/lQ2gHTegDaAhHQJPYoLNOdoZ1fZQoaAZHQGI0X1J17ppoB03oA2gIR0CT2v45Lh73dX2UKGgGR0BwSyGtZFG5aAdNagJoCEdAk/I+pKjBVXV9lChoBkdAYH/3ljmSyWgHTegDaAhHQJP2oOAiFCd1fZQoaAZHQGXfuTJQtSRoB03oA2gIR0CT9935N47jdX2UKGgGR0BtYSqOtGNJaAdNJgNoCEdAk/886mwaBXV9lChoBkdAXIK3nZCfH2gHTegDaAhHQJP/1HYpUgl1fZQoaAZHQGSe7mU4aP1oB03oA2gIR0CUBmxYq5LAdX2UKGgGR0BjsEW/JvHcaAdN6ANoCEdAlAdWaH9FWnV9lChoBkdAZVcvs7dSEWgHTegDaAhHQJQUW31BdD91fZQoaAZHQF061EmY0EZoB03oA2gIR0CUGUIPsiSrdX2UKGgGR0Bh7om1IAfdaAdN6ANoCEdAlBpvnr6ciHV9lChoBkdAW+rw7T2FnWgHTegDaAhHQJQg/eJpFkR1fZQoaAZHQGGPA08/2TRoB03oA2gIR0CUJkZML4N7dX2UKGgGR0BiBipR4yGjaAdN6ANoCEdAlCpDdcjZ+XV9lChoBkdAZE58EV32VWgHTegDaAhHQJQxRjOLR8d1fZQoaAZHQGMrGz8gpz9oB03oA2gIR0CUN4ah6By0dX2UKGgGR0BiT/N/vv0AaAdN6ANoCEdAlDmsk6cRUXV9lChoBkdAWzv+hoM8YGgHTegDaAhHQJRQonx8UmF1fZQoaAZHQG/1JcgQpWpoB00BA2gIR0CUUzm9QGfPdX2UKGgGR0BhB2nKnvUjaAdN6ANoCEdAlFO1FDv3J3V9lChoBkdAYtgycCo0h2gHTegDaAhHQJRUklu3trt1fZQoaAZHQG6123KB/ZxoB02WAWgIR0CUVwjMFEApdX2UKGgGR0Bkt7B2wFC+aAdN6ANoCEdAlFqJ5VwPy3V9lChoBkdAY4imWt2cKGgHTegDaAhHQJRbOnrIHTt1fZQoaAZHQGxN7Sy+pOxoB026AmgIR0CUYMao/A0sdX2UKGgGR0Bi6uJ+DvmYaAdN6ANoCEdAlGLTibUgCHV9lChoBkdAcBQfQrtmc2gHTYkBaAhHQJRnLwsoUi91fZQoaAZHQGF1pkXk5p9oB03oA2gIR0CUb9QnhKlIdX2UKGgGR0BfAg3kxREXaAdN6ANoCEdAlHSknXumanV9lChoBkdAbqQxOclPamgHTRgCaAhHQJR6u/wiJO51fZQoaAZHQGKQ4EW69TRoB03oA2gIR0CUfMMQVbiZdX2UKGgGR0Big2ERJ2+xaAdN6ANoCEdAlIRbBCUornV9lChoBkdAXRuRdQfp2WgHTegDaAhHQJSJYWl/H5t1fZQoaAZHQGI36Ae7tiRoB03oA2gIR0CUj2UHpr1vdX2UKGgGR0BinwUBXCCSaAdN6ANoCEdAlJhN34bjtHVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}