update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3931
|
22 |
+
- Precision: 0.8809
|
23 |
+
- Recall: 0.9501
|
24 |
+
- F1: 0.9142
|
25 |
+
- Accuracy: 0.8579
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 5
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| No log | 1.0 | 130 | 0.4105 | 0.8568 | 0.9645 | 0.9075 | 0.8438 |
|
57 |
+
| No log | 2.0 | 260 | 0.4006 | 0.8520 | 0.9754 | 0.9096 | 0.8460 |
|
58 |
+
| No log | 3.0 | 390 | 0.4112 | 0.8543 | 0.9454 | 0.8975 | 0.8286 |
|
59 |
+
| 0.376 | 4.0 | 520 | 0.4278 | 0.8711 | 0.9235 | 0.8966 | 0.8308 |
|
60 |
+
| 0.376 | 5.0 | 650 | 0.4430 | 0.8655 | 0.9317 | 0.8974 | 0.8308 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.15.0
|
66 |
+
- Pytorch 1.10.1+cu113
|
67 |
+
- Datasets 1.18.0
|
68 |
+
- Tokenizers 0.10.3
|