alfredplpl
commited on
Commit
•
01bbfb2
1
Parent(s):
27d422f
Update README.md
Browse files
README.md
CHANGED
@@ -1,62 +1,83 @@
|
|
1 |
---
|
2 |
library_name: diffusers
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
#
|
6 |
|
7 |
-
|
|
|
8 |
|
|
|
9 |
|
|
|
10 |
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
- **Funded by [optional]:** [More Information Needed]
|
21 |
-
- **Shared by [optional]:** [More Information Needed]
|
22 |
-
- **Model type:** [More Information Needed]
|
23 |
-
- **Language(s) (NLP):** [More Information Needed]
|
24 |
-
- **License:** [More Information Needed]
|
25 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
-
<!-- Provide the basic links for the model. -->
|
30 |
|
31 |
-
|
32 |
-
- **Paper [optional]:** [More Information Needed]
|
33 |
-
- **Demo [optional]:** [More Information Needed]
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
###
|
40 |
|
41 |
-
|
|
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
### Out-of-Scope Use
|
52 |
|
53 |
-
|
54 |
|
55 |
[More Information Needed]
|
56 |
|
57 |
## Bias, Risks, and Limitations
|
58 |
|
59 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
|
61 |
[More Information Needed]
|
62 |
|
@@ -68,131 +89,99 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
68 |
|
69 |
## How to Get Started with the Model
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
[More Information Needed]
|
74 |
|
75 |
## Training Details
|
76 |
|
77 |
### Training Data
|
78 |
|
79 |
-
|
80 |
|
81 |
-
|
|
|
82 |
|
83 |
-
### Training Procedure
|
84 |
|
85 |
-
|
86 |
|
87 |
-
#### Preprocessing [optional]
|
88 |
|
89 |
-
[More Information Needed]
|
90 |
|
91 |
|
92 |
#### Training Hyperparameters
|
93 |
|
94 |
-
- **Training regime:**
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
139 |
|
140 |
## Environmental Impact
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
- **Hardware Type:** [More Information Needed]
|
147 |
-
- **Hours used:** [More Information Needed]
|
148 |
-
- **Cloud Provider:** [More Information Needed]
|
149 |
-
- **Compute Region:** [More Information Needed]
|
150 |
-
- **Carbon Emitted:** [More Information Needed]
|
151 |
|
152 |
## Technical Specifications [optional]
|
153 |
|
154 |
### Model Architecture and Objective
|
155 |
|
156 |
-
|
157 |
|
158 |
### Compute Infrastructure
|
159 |
|
160 |
-
|
161 |
|
162 |
#### Hardware
|
163 |
|
164 |
-
|
165 |
|
166 |
#### Software
|
167 |
|
168 |
-
[
|
169 |
-
|
170 |
-
## Citation [optional]
|
171 |
-
|
172 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
-
|
174 |
-
**BibTeX:**
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
**APA:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
## Glossary [optional]
|
183 |
|
184 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## More Information [optional]
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Model Card Authors [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
|
196 |
## Model Card Contact
|
197 |
|
198 |
-
|
|
|
1 |
---
|
2 |
library_name: diffusers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- common-canvas/commoncatalog-cc-by
|
6 |
+
- alfredplpl/commoncatalog-cc-by-recap
|
7 |
+
language:
|
8 |
+
- en
|
9 |
---
|
10 |
|
11 |
+
# CommonArt-PoC
|
12 |
|
13 |
+
CommonArt is a text-to-image generation model with authorized images only.
|
14 |
+
The architecture is based on DiT that is using by Stable Diffusion 3 and Sora.
|
15 |
|
16 |
+
# Usage
|
17 |
|
18 |
+
You can use this model by diffusers library.
|
19 |
|
20 |
+
```python
|
21 |
+
import torch
|
22 |
+
from diffusers import Transformer2DModel, PixArtSigmaPipeline
|
23 |
|
24 |
+
device = "cpu"
|
25 |
+
weight_dtype = torch.float32
|
26 |
|
27 |
+
transformer = Transformer2DModel.from_pretrained(
|
28 |
+
"alfredplpl/CommonArt-PoC",
|
29 |
+
torch_dtype=weight_dtype,
|
30 |
+
use_safetensors=True,
|
31 |
+
)
|
32 |
|
33 |
+
pipe = PixArtSigmaPipeline.from_pretrained(
|
34 |
+
"PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
35 |
+
transformer=transformer,
|
36 |
+
torch_dtype=weight_dtype,
|
37 |
+
use_safetensors=True,
|
38 |
+
)
|
39 |
|
40 |
+
pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
prompt = " A picturesque photograph of a serene coastline, capturing the tranquility of a sunrise over the ocean. The image shows a wide expanse of gently rolling sandy beach, with clear, turquoise water stretching into the horizon. Seashells and pebbles are scattered along the shore, and the sun's rays create a golden hue on the water's surface. The distant outline of a lighthouse can be seen, adding to the quaint charm of the scene. The sky is painted with soft pastel colors of dawn, gradually transitioning from pink to blue, creating a sense of peacefulness and beauty."
|
43 |
+
image = pipe(prompt,guidance_scale=4.5,max_squence_length=512).images[0]
|
44 |
+
image.save("beach.png")
|
45 |
+
```
|
46 |
|
|
|
47 |
|
48 |
+
## Model Details
|
|
|
|
|
49 |
|
50 |
+
### Model Description
|
51 |
|
52 |
+
- **Developed by:** alfredplpl
|
53 |
+
- **Funded by [optional]:** alfredplpl
|
54 |
+
- **Shared by [optional]:** alfredplpl
|
55 |
+
- **Model type:** Diffusion transformer
|
56 |
+
- **Language(s) (NLP):** English
|
57 |
+
- **License:** Apache-2.0
|
58 |
|
59 |
+
### Model Sources
|
60 |
|
61 |
+
- **Repository:** [Pixart-Sigma](https://github.com/PixArt-alpha/PixArt-sigma)
|
62 |
+
- **Paper:** [PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation](https://arxiv.org/abs/2403.04692)
|
63 |
|
64 |
+
## Uses
|
65 |
|
66 |
+
- Any purpose
|
67 |
|
68 |
+
### Direct Use
|
69 |
|
70 |
+
- To develop commercial text-to-image generation.
|
71 |
+
- To research non-commercial text-to-image generation.
|
72 |
|
73 |
### Out-of-Scope Use
|
74 |
|
75 |
+
- To generate misinformation.
|
76 |
|
77 |
[More Information Needed]
|
78 |
|
79 |
## Bias, Risks, and Limitations
|
80 |
|
|
|
81 |
|
82 |
[More Information Needed]
|
83 |
|
|
|
89 |
|
90 |
## How to Get Started with the Model
|
91 |
|
92 |
+
You use
|
|
|
|
|
93 |
|
94 |
## Training Details
|
95 |
|
96 |
### Training Data
|
97 |
|
98 |
+
I used these dataset to train the transformer.
|
99 |
|
100 |
+
- CommonCatalog CC BY
|
101 |
+
- CommonCatalog CC BY
|
102 |
|
|
|
103 |
|
104 |
+
### Training Procedure
|
105 |
|
|
|
106 |
|
|
|
107 |
|
108 |
|
109 |
#### Training Hyperparameters
|
110 |
|
111 |
+
- **Training regime:**
|
112 |
+
```bash
|
113 |
+
_base_ = ['../PixArt_xl2_internal.py']
|
114 |
+
data_root = "/mnt/my_raid/pixart"
|
115 |
+
image_list_json = ['data_info.json']
|
116 |
+
|
117 |
+
data = dict(
|
118 |
+
type='InternalDataSigma', root='InternData', image_list_json=image_list_json, transform='default_train',
|
119 |
+
load_vae_feat=False, load_t5_feat=False,
|
120 |
+
)
|
121 |
+
image_size = 256
|
122 |
+
|
123 |
+
# model setting
|
124 |
+
model = 'PixArt_XL_2'
|
125 |
+
mixed_precision = 'fp16' # ['fp16', 'fp32', 'bf16']
|
126 |
+
fp32_attention = True
|
127 |
+
#load_from = "/mnt/my_raid/pixart/working/checkpoints/epoch_1_step_17500.pth" # https://huggingface.co/PixArt-alpha/PixArt-Sigma
|
128 |
+
#resume_from = dict(checkpoint="/mnt/my_raid/pixart/working/checkpoints/epoch_37_step_62039.pth", load_ema=False, resume_optimizer=True, resume_lr_scheduler=True)
|
129 |
+
vae_pretrained = "output/pretrained_models/pixart_sigma_sdxlvae_T5_diffusers/vae" # sdxl vae
|
130 |
+
multi_scale = False # if use multiscale dataset model training
|
131 |
+
pe_interpolation = 0.5
|
132 |
+
|
133 |
+
# training setting
|
134 |
+
num_workers = 10
|
135 |
+
train_batch_size = 64 # 64 as default
|
136 |
+
num_epochs = 200 # 3
|
137 |
+
gradient_accumulation_steps = 1
|
138 |
+
grad_checkpointing = True
|
139 |
+
gradient_clip = 0.2
|
140 |
+
optimizer = dict(type='CAMEWrapper', lr=2e-5, weight_decay=0.0, betas=(0.9, 0.999, 0.9999), eps=(1e-30, 1e-16))
|
141 |
+
lr_schedule_args = dict(num_warmup_steps=1000)
|
142 |
+
|
143 |
+
#visualize=True
|
144 |
+
#train_sampling_steps = 3
|
145 |
+
#eval_sampling_steps = 3
|
146 |
+
log_interval = 20
|
147 |
+
save_model_epochs = 1
|
148 |
+
#save_model_steps = 2500
|
149 |
+
work_dir = 'output/debug'
|
150 |
+
|
151 |
+
# pixart-sigma
|
152 |
+
scale_factor = 0.13025
|
153 |
+
real_prompt_ratio = 0.5
|
154 |
+
model_max_length = 512
|
155 |
+
class_dropout_prob = 0.1
|
156 |
+
|
157 |
+
```
|
158 |
|
159 |
## Environmental Impact
|
160 |
|
161 |
+
- **Hardware Type:** A6000x2
|
162 |
+
- **Hours used:** 1000
|
163 |
+
- **Compute Region:** Japan
|
164 |
+
- **Carbon Emitted:** Not so much
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
## Technical Specifications [optional]
|
167 |
|
168 |
### Model Architecture and Objective
|
169 |
|
170 |
+
Diffusion Transformer
|
171 |
|
172 |
### Compute Infrastructure
|
173 |
|
174 |
+
Desktop PC
|
175 |
|
176 |
#### Hardware
|
177 |
|
178 |
+
A6000x2
|
179 |
|
180 |
#### Software
|
181 |
|
182 |
+
[Pixart-Sigma repository](https://github.com/PixArt-alpha/PixArt-sigma)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
## Model Card Contact
|
186 |
|
187 |
+
alfredplpl
|