alexrods's picture
Upload PPO LunarLander-v2 trained agent
4d79886 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66f8cb7c70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66f8cb7d00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66f8cb7d90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66f8cb7e20>", "_build": "<function ActorCriticPolicy._build at 0x7f66f8cb7eb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f66f8cb7f40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66f8cbc040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66f8cbc0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f66f8cbc160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66f8cbc1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66f8cbc280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66f8cbc310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f66f8c5b700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707124233937741242, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOhar3PnTi80nLXPBJOmDyOHJq9ugd6PQAAgD8AAIA/Y2Nrvm2Faj8mXfy9q+S2viZ8SL6FmjO9AAAAAAAAAABmztI8mbznPhHBl7xqWZK+5jsxPHuRFrwAAAAAAAAAAEBsuL2oPp4/SLgnv+LaE7+9tfO7mmeXvQAAAAAAAAAAptmhveGcmbpOuN42huHbMa0hArqdBAG2AAAAAAAAgD+a+Za9w1VmObDHg7oixee0GBCbOwskoDkAAIA/AACAP/ONrz0lhWo/rcPjPYwxtL6GfO89LJ0OvAAAAAAAAAAADbynvXsKtz/7g2S+7Wayvt3Prr1mM9a9AAAAAAAAAADNsCQ98CQlP+5CqL3l5pi+4XMNPZxrmbwAAAAAAAAAAJpEFL2U0CY/Jm7BvIYWd76cweC8CKV4PQAAAAAAAAAA2sqFPSBRqD8oFYQ+hFTgvuSj+D3rSf09AAAAAAAAAADtT1q+oieyPiWzaT4t55W+LEh5PSa34bsAAAAAAAAAANozvr24RNw9on+XPe1jjr7c2tE8u3/9vAAAAAAAAAAAU2tePoo1ij/iAOY+2oXCviNKnz7bfW8+AAAAAAAAAABm7g+8TOyVP8bKfr2/vN++FRaeu4OIqT0AAAAAAAAAAFpwJr7RteU9c7cePiKfpL6ShlY9Bm2IvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3NsWGh24eMAWyUTSMBjAF0lEdAmdnE0vXbunV9lChoBkdAcoYsj3VTaWgHTQ0BaAhHQJnbADRtxdZ1fZQoaAZHQG9zruIAOrhoB012AWgIR0CZ7ncQRPGidX2UKGgGR0ByP92t+1BuaAdNIQFoCEdAme6CGJvYOHV9lChoBkdAcqvnZTQ3P2gHTSABaAhHQJntpb8m8dx1fZQoaAZHQHBtTfm9xqBoB007AWgIR0CZ72ttALRbdX2UKGgGR0BwQ4S7GvOhaAdNNAFoCEdAmfF2OhkAgnV9lChoBkdAccpIOYplSWgHTQoBaAhHQJnwyOn2qT91fZQoaAZHQHKMX5aePJdoB00VAWgIR0CZ8b1V5rxidX2UKGgGR0BxMujqOcUeaAdL/2gIR0CZ8b22Xsw+dX2UKGgGR0BzKhQVKwpwaAdNSQFoCEdAmfJaWkadc3V9lChoBkdAcLQvOhTOxGgHTREBaAhHQJnyjd1uBMB1fZQoaAZHQHEMJQ1rIo5oB00YAWgIR0CZ8vbXYlIFdX2UKGgGR0BzDsxdpqREaAdNSQFoCEdAmfOngDRtxnV9lChoBkdAbmpsi0OVgWgHTQEBaAhHQJny0OXmeUZ1fZQoaAZHQHDL2nO0LMNoB0v0aAhHQJn2a3DvVmV1fZQoaAZHQHDjIigTRIBoB03EAWgIR0CZ9mrK/20zdX2UKGgGR0By45vfj0cwaAdNEQFoCEdAmfaGaMJhOXV9lChoBkdAcVFEtNBWxWgHTTABaAhHQJn4Y8QqZtx1fZQoaAZHQHGnEkfLcKxoB00PAWgIR0CZ+1AavRqodX2UKGgGR0BxuBHy3CsPaAdNLgFoCEdAmfwyvcJtznV9lChoBkdAcI8vwmVqvmgHTcQBaAhHQJn8YYYR/Vl1fZQoaAZHQHCM8hTwUg1oB00BAWgIR0CZ/jdB0ITodX2UKGgGR0ByoQCih37laAdNLgFoCEdAmf92PHT7VXV9lChoBkdAbbQVuaWonGgHTSQBaAhHQJn/bSQYDT11fZQoaAZHQFOJ+dbxEv1oB0v9aAhHQJoCea+evp11fZQoaAZHQG6B1psXSBtoB03BAWgIR0CaBFhUzbeudX2UKGgGR0Bw0/L0SRKZaAdNEgFoCEdAmgOp4jbBXXV9lChoBkdAb60T4+KTCGgHTTYBaAhHQJoHOvaDf3x1fZQoaAZHQG2xaU7jkuJoB00JAWgIR0CaB/MAFPi2dX2UKGgGR0Bib0r08NhFaAdN6ANoCEdAmggw5FPSD3V9lChoBkdAcGOBnBciW2gHTRMBaAhHQJoIsuCf6Gh1fZQoaAZHQG+XTkIX0oVoB00tAmgIR0CaCayaNMoMdX2UKGgGR0BxCSf16E8JaAdNDQFoCEdAmgormU4aP3V9lChoBkdAbj2HryDqW2gHTS4BaAhHQJoJ1RvWH1x1fZQoaAZHQG22XCTEBKdoB004AWgIR0CaDKOOsDGMdX2UKGgGR0ByUi02LpA2aAdNQwFoCEdAmgzDPrv9cnV9lChoBkdAbvwJTER8MWgHTS8BaAhHQJoOoN4JNTN1fZQoaAZHQHJTMjAzpHJoB00RAWgIR0CaDoQCSzPbdX2UKGgGR0ByQqMxXXAeaAdNUgJoCEdAmhAGovSMLnV9lChoBkdAS9orYoRZlmgHS9BoCEdAmhAHKW9lE3V9lChoBkdAbNEcjJMg2mgHTUYBaAhHQJoRJqSHM2Z1fZQoaAZHQHBEfFm4AjpoB00CAWgIR0CaEUKoQ4CIdX2UKGgGR0BxDOFIuoP1aAdNDAFoCEdAmhJjFqBVdXV9lChoBkdAcMbCP6sQumgHTRUBaAhHQJoUBCCz1K51fZQoaAZHQHBpPoJRfnhoB00eAWgIR0CaE2T+NtIkdX2UKGgGR0BrFj1CgK4QaAdNGgFoCEdAmhSrb+Lm63V9lChoBkdAcmjaPjn3c2gHTScBaAhHQJolm/bj94x1fZQoaAZHQHLmNALRa5hoB00TAWgIR0CaJ5eVLSNPdX2UKGgGR0Bm34bKifxuaAdN6ANoCEdAmifFjqfOEHV9lChoBkdAbfAKmbb1y2gHTRQBaAhHQJonn/n4fwJ1fZQoaAZHQGGpXiiqQzVoB03oA2gIR0CaKgEG7jDLdX2UKGgGR0BwI5P1tfoiaAdNHwFoCEdAmioOP3i71HV9lChoBkdAVXwKneizs2gHTegDaAhHQJoriQU5+6R1fZQoaAZHQHBwTtXxOL1oB00JAWgIR0CaLCNbTtsvdX2UKGgGR0BxPAnuy/sWaAdNGgFoCEdAmiz6ya/h2nV9lChoBkdAbd40eEIw/WgHTTwBaAhHQJotBrP+n651fZQoaAZHQHF+0mY0EYBoB01BAWgIR0CaLThYeT3ZdX2UKGgGR0BECQOFxn3+aAdL3GgIR0CaLOdBjWkKdX2UKGgGR0By4BrP+n63aAdNHAFoCEdAmjAwU5+6RXV9lChoBkdAcC/2WpqASWgHTTMBaAhHQJox50PpY9x1fZQoaAZHQG/KAfMfRu1oB00PAWgIR0CaMtHAh0QsdX2UKGgGR0BvFpnezlcRaAdNBgFoCEdAmjJXFHavinV9lChoBkdAcTCiHZbpvGgHTUwBaAhHQJoyz1SOzY51fZQoaAZHQHGNeuRs/INoB006AWgIR0CaNBiTdLxqdX2UKGgGR0ByQp4cFQl9aAdNDAFoCEdAmjStyDIzWXV9lChoBkdAcLL2sJY1YWgHTQsBaAhHQJo10yZa3Zx1fZQoaAZHQHMAzvRZ2ZBoB01HAWgIR0CaNrNL127ndX2UKGgGR0BwEmn2qT8paAdNBQFoCEdAmja69f1Hv3V9lChoBkdAc05XvH93r2gHTSYBaAhHQJo3J6zE74l1fZQoaAZHQHD+1xffGdZoB00VAWgIR0CaNz/hl18tdX2UKGgGR0By+FR+BpYcaAdNHQFoCEdAmjedSqEOAnV9lChoBkdAcWj0xM36ymgHTRgBaAhHQJo3B00WM0h1fZQoaAZHQHHWHogV45doB00LAWgIR0CaOomL9/BndX2UKGgGR0Bxq+aJAMUiaAdL+2gIR0CaOm55qubJdX2UKGgGR0ByF7rmhdt3aAdNEQFoCEdAmjurJGOMl3V9lChoBkdAcPKG9pRGdGgHTRgBaAhHQJo79QKrq+t1fZQoaAZHQHHqbyxzJZJoB00PAWgIR0CaPPMdLg4wdX2UKGgGR0Bw7qLWI42kaAdL+2gIR0CaPfkpZwGXdX2UKGgGR0ByT7blA/s3aAdNKAFoCEdAmj5prULDynV9lChoBkdAcNhM98qnWWgHS/poCEdAmj9Z00WM0nV9lChoBkdAcg8Yao/A02gHTQsDaAhHQJo/igezUqh1fZQoaAZHQHJ1l1B+nZVoB00nAWgIR0CaQHL9deIEdX2UKGgGR0Bv35dld1MeaAdNHAFoCEdAmkClCb+cY3V9lChoBkdAcinHH3lCC2gHTQcBaAhHQJo/2bobGWF1fZQoaAZHQHJZFCCz1K5oB00aAWgIR0CaQP15B1LbdX2UKGgGR0BzBe6MBIWhaAdNWgFoCEdAmkH9cSoOx3V9lChoBkdAZLlwvQF9r2gHTegDaAhHQJpDItFrl/91fZQoaAZHQHApbDVH4GloB00MAWgIR0CaQ36Skj5cdX2UKGgGR0Bxh/RZ2ZAqaAdNLQFoCEdAmkSz0UXYUXV9lChoBkdAb6r6By0a62gHTY4CaAhHQJpGHEgntv51fZQoaAZHQGxlO1fE4vNoB00WAWgIR0CaRiJvHcUNdX2UKGgGR0Bvpdzp5eJIaAdNWgFoCEdAmkcfo7muDHV9lChoBkdAbl2gf2bobGgHTR8BaAhHQJpHswBYFJR1fZQoaAZHQHF8UcGTs6doB00KAWgIR0CaSAibDuSfdX2UKGgGR0Bwy1LWZqmCaAdNJQFoCEdAmkiuxnnMdXV9lChoBkdAcbD59Vmz0GgHS/5oCEdAmkfT90ihWnV9lChoBkdAccqLw4KhMGgHTXYBaAhHQJpIF7SiM5x1fZQoaAZHQHFmwR02caxoB01WAWgIR0CaSQNCZ4OddX2UKGgGR0BxTrLbHp8naAdNHAFoCEdAmklTkU9IPXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}