Zero-Shot Classification
Transformers
PyTorch
Safetensors
electra
text-classification
Inference Endpoints
saattrupdan commited on
Commit
bdf45fd
1 Parent(s): 9792365

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -14
README.md CHANGED
@@ -77,12 +77,13 @@ The Scandinavian scores are the average of the Danish, Swedish and Norwegian sco
77
 
78
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
79
  | :-------- | :------------ | :--------- | :----------- | :----------- |
80
- | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | asd | asd | asd | 354M |
81
- | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | asd | asd | asd | 279M |
82
- | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | asd | asd | asd | 178M |
 
83
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 63.94% | 70.41% | 77.23% | 279M |
84
- | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | asd | asd | asd | 560M |
85
- | `alexandrainst/scandi-nli-small` (this) | asd | asd | asd | **22M** |
86
 
87
 
88
  ### Danish Evaluation
@@ -96,6 +97,7 @@ We use a test split of the [DanFEVER dataset](https://aclanthology.org/2021.noda
96
  | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 62.44% | 55.00% | 80.42% | 178M |
97
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 52.79% | 52.00% | 72.35% | 279M |
98
  | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 49.18% | 50.31% | 69.73% | 560M |
 
99
  | `alexandrainst/scandi-nli-small` (this) | 47.28% | 48.88% | 73.46% | **22M** |
100
 
101
 
@@ -107,12 +109,13 @@ We acknowledge that not evaluating on a gold standard dataset is not ideal, but
107
 
108
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
109
  | :-------- | :------------ | :--------- | :----------- | :----------- |
110
- | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | asd | asd | asd | 354M |
111
- | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | asd | asd | asd | 178M |
112
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 73.84% | 82.46% | 82.58% | 279M |
113
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 73.32% | 82.15% | 82.08% | 279M |
114
- | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | asd | asd | asd | 560M |
115
- | `alexandrainst/scandi-nli-small` (this) | asd | asd | asd | **22M** |
 
116
 
117
 
118
  ### Norwegian Evaluation
@@ -123,13 +126,13 @@ We acknowledge that not evaluating on a gold standard dataset is not ideal, but
123
 
124
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
125
  | :-------- | :------------ | :--------- | :----------- | :----------- |
126
- | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | asd | asd | asd | 354M |
 
 
127
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 65.33% | 76.73% | 76.65% | 279M |
128
- | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | asd | asd | asd | 178M |
129
- | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | asd | asd | asd | 178M |
130
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 65.18% | 76.76% | 76.77% | 279M |
131
- | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | asd | asd | asd | 560M |
132
- | `alexandrainst/scandi-nli-small` (this) | asd | asd | asd| **22M** |
133
 
134
 
135
  ## Training procedure
 
77
 
78
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
79
  | :-------- | :------------ | :--------- | :----------- | :----------- |
80
+ | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **73.70** | **74.44** | **83.91** | 354M |
81
+ | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 69.01% | 71.99% | 80.66% | 279M |
82
+ | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 67.42% | 71.54% | 80.09% | 178M |
83
+ | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 64.17% | 70.80% | 77.29% | 560M |
84
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 63.94% | 70.41% | 77.23% | 279M |
85
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 61.71% | 68.36% | 76.08% | 178M |
86
+ | `alexandrainst/scandi-nli-small` (this) | 56.02% | 65.30% | 73.56% | **22M** |
87
 
88
 
89
  ### Danish Evaluation
 
97
  | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 62.44% | 55.00% | 80.42% | 178M |
98
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 52.79% | 52.00% | 72.35% | 279M |
99
  | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 49.18% | 50.31% | 69.73% | 560M |
100
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 56.92% | 53.25% | 76.39% | 178M |
101
  | `alexandrainst/scandi-nli-small` (this) | 47.28% | 48.88% | 73.46% | **22M** |
102
 
103
 
 
109
 
110
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
111
  | :-------- | :------------ | :--------- | :----------- | :----------- |
112
+ | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **76.69%** | **84.47%** | **84.38%** | 354M |
113
+ | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 75.35% | 83.42% | 83.55% | 560M |
114
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 73.84% | 82.46% | 82.58% | 279M |
115
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 73.32% | 82.15% | 82.08% | 279M |
116
+ | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 72.29% | 81.37% | 81.51% | 178M |
117
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 64.69% | 76.40% | 76.47% | 178M |
118
+ | `alexandrainst/scandi-nli-small` (this) | 62.35% | 74.79% | 74.93% | **22M** |
119
 
120
 
121
  ### Norwegian Evaluation
 
126
 
127
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
128
  | :-------- | :------------ | :--------- | :----------- | :----------- |
129
+ | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **70.61%** | **80.43%** | **80.36%** | 354M |
130
+ | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 67.99% | 78.68% | 78.60% | 560M |
131
+ | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 67.53% | 78.24% | 78.33% | 178M |
132
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 65.33% | 76.73% | 76.65% | 279M |
 
 
133
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 65.18% | 76.76% | 76.77% | 279M |
134
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 63.51% | 75.42% | 75.39% | 178M |
135
+ | `alexandrainst/scandi-nli-small` (this) | 58.42% | 72.22% | 72.30% | **22M** |
136
 
137
 
138
  ## Training procedure