saattrupdan
commited on
Commit
·
beafdfd
1
Parent(s):
44ff45c
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: zero-shot-classification
|
3 |
+
language:
|
4 |
+
- da
|
5 |
+
- no
|
6 |
+
- nb
|
7 |
+
- sv
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- strombergnlp/danfever
|
11 |
+
- KBLab/overlim
|
12 |
+
- MoritzLaurer/multilingual-NLI-26lang-2mil7
|
13 |
+
model-index:
|
14 |
+
- name: nb-bert-base-ner-scandi
|
15 |
+
results: []
|
16 |
+
widget:
|
17 |
+
- example_title: Danish
|
18 |
+
text: Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'
|
19 |
+
candidate_labels: sundhed, politik, sport, religion
|
20 |
+
- example_title: Norwegian
|
21 |
+
text: Regjeringen i Russland hevder Norge fører en politikk som vil føre til opptrapping i Arktis og «den endelige ødeleggelsen av russisk-norske relasjoner».
|
22 |
+
candidate_labels: helse, politikk, sport, religion
|
23 |
+
- example_title: Swedish
|
24 |
+
text: Så luras kroppens immunförsvar att bota cancer
|
25 |
+
candidate_labels: hälsa, politik, sport, religion
|
26 |
+
inference:
|
27 |
+
parameters:
|
28 |
+
hypothesis_template: "Dette eksempel handler om {}"
|
29 |
+
---
|
30 |
+
|
31 |
+
# ScandiNLI - Natural Language Inference model for Scandinavian Languages
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) for Natural Language Inference in Danish, Norwegian Bokmål and Swedish.
|
34 |
+
|
35 |
+
It has been fine-tuned on a dataset composed of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) as well as machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) and [CommitmentBank](https://doi.org/10.18148/sub/2019.v23i2.601) into all three languages, and machine translated versions of [FEVER](https://aclanthology.org/N18-1074/) and [Adversarial NLI](https://aclanthology.org/2020.acl-main.441/) into Swedish.
|
36 |
+
|
37 |
+
The three languages are sampled equally during training, and they're validated on validation splits of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) and machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) for Swedish and Norwegian Bokmål, sampled equally.
|
38 |
+
|
39 |
+
|
40 |
+
## Quick start
|
41 |
+
|
42 |
+
You can use this model in your scripts as follows:
|
43 |
+
|
44 |
+
```python
|
45 |
+
>>> from transformers import pipeline
|
46 |
+
>>> classifier = pipeline(
|
47 |
+
... "zero-shot-classification",
|
48 |
+
... model="alexandrainst/nb-bert-base-nli-scandi",
|
49 |
+
... )
|
50 |
+
>>> classifier(
|
51 |
+
... "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'",
|
52 |
+
... candidate_labels=['sundhed', 'politik', 'sport', 'religion'],
|
53 |
+
... hypothesis_template="Dette eksempel handler om {}",
|
54 |
+
... )
|
55 |
+
{'sequence': "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'",
|
56 |
+
'labels': ['sport', 'religion', 'politik', 'sundhed'],
|
57 |
+
'scores': [0.6134647727012634,
|
58 |
+
0.30309760570526123,
|
59 |
+
0.05021871626377106,
|
60 |
+
0.03321893885731697]}
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 4242
|
73 |
+
- gradient_accumulation_steps: 2
|
74 |
+
- total_train_batch_size: 32
|
75 |
+
- optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_steps: 500
|
78 |
+
- max_steps: 50,000
|