alessiodm commited on
Commit
0710dcb
1 Parent(s): 3260420

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.25 +/- 0.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6615823dc818e83ae0d5d5a43c12ed8ef1bc51232f6cda2192d81731eb64db2c
3
+ size 108131
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcea6a7d120>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7bcea6a71740>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698793704655870700,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2QIgv9vi4z6Sr60+dj46P60ar78hZaK/2dv7vcGM/r4oBGu+MRgiv4TmAb8M27A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAq6u3v+FmZD9ssPA+2Ip0P/xFSb8ZaXu/hKPHvsWzAb+S7ZO/2XZkv3rOm78JyGc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADZAiC/2+LjPpKvrT4+Oke/5obSP+81Yz92Pjo/rRqvvyFlor8jyBY/jA1Gv8IExr/Z2/u9wYz+vigEa75sNey//PbWv1KNrr8xGCK/hOYBvwzbsD79O1e/1qDRvy55Zj+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.62504345 0.44509014 0.33923012]\n [ 0.7275156 -1.3680016 -1.2687112 ]\n [-0.12297792 -0.49716762 -0.22950804]\n [-0.63318163 -0.50742364 0.3454212 ]]",
34
+ "desired_goal": "[[-1.4349264 0.8921948 0.470096 ]\n [ 0.9552436 -0.7862241 -0.9820724 ]\n [-0.3899194 -0.5066493 -1.1556876 ]\n [-0.8924385 -1.2172387 0.90539604]]",
35
+ "observation": "[[-0.62504345 0.44509014 0.33923012 -0.77823246 1.6447418 0.8875417 ]\n [ 0.7275156 -1.3680016 -1.2687112 0.58899134 -0.7736442 -1.5470202 ]\n [-0.12297792 -0.49716762 -0.22950804 -1.8453803 -1.6794124 -1.3636878 ]\n [-0.63318163 -0.50742364 0.3454212 -0.8407591 -1.6377208 0.90028656]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIi2UvXylq71XyZc+BU6vPaCV3b3e7Uk+YPgYvhnLRj1AEXg+gAwfPccw77ufrR8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.07235171 -0.08381173 0.29645798]\n [ 0.08559803 -0.10819554 0.19719645]\n [-0.14938498 0.04853353 0.2422533 ]\n [ 0.03883028 -0.00729952 0.15593575]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9MfJV81Gb2MAWyUSwOMAXSUR0ClVZpHAh0RdX2UKGgGR7/HgOz6ab4KaAdLA2gIR0ClVeWkadc0dX2UKGgGR7/XuA7PppvhaAdLBGgIR0ClVWdvKlpHdX2UKGgGR7/ByiEg4ffXaAdLAmgIR0ClVaoVM23sdX2UKGgGR7/R4Ia99MK1aAdLA2gIR0ClVk9YW+GodX2UKGgGR7/Bq9Gqgh8qaAdLAmgIR0ClVfiyY5T7dX2UKGgGR7+7JzT4L1EmaAdLAmgIR0ClVb0i6g/UdX2UKGgGR7/JeuV5a/yoaAdLA2gIR0ClVYM85jpcdX2UKGgGR7/NHS4OMERraAdLA2gIR0ClVhB60IC2dX2UKGgGR7/YHmA9V3lkaAdLBGgIR0ClVm7KzRhMdX2UKGgGR7+pKjBVMmF8aAdLAWgIR0ClVhgIhQnAdX2UKGgGR7/PoqTbFjusaAdLA2gIR0ClVdRcNYr8dX2UKGgGR7/PbJwKjSG8aAdLA2gIR0ClVZllCkXUdX2UKGgGR7+7wrlNlAeJaAdLAmgIR0ClVoPVmSQpdX2UKGgGR7+9C4SYgJTmaAdLAmgIR0ClVemR3eN2dX2UKGgGR7/WkYGdI5HVaAdLA2gIR0ClVbWpIczZdX2UKGgGR7/VDSgGr0aqaAdLBGgIR0ClVjzGgi/xdX2UKGgGR7+9DOTq0MPSaAdLAmgIR0ClVfljmSyMdX2UKGgGR7+VoUSIxgy/aAdLAWgIR0ClVb6yjYZmdX2UKGgGR7/IL/jsD4gzaAdLA2gIR0ClVpwYLsrvdX2UKGgGR7/Ba/yoXKr8aAdLAmgIR0ClVdEUKzAvdX2UKGgGR7+5cKPXCj1xaAdLAmgIR0ClVq5x7zCldX2UKGgGR7/PQiRnvlU7aAdLA2gIR0ClVlfVZs9CdX2UKGgGR7/JpX6qKgqWaAdLA2gIR0ClVhQLux8ldX2UKGgGR7+3HAAQxvehaAdLAmgIR0ClVd9rO7g9dX2UKGgGR7/A+4b0e2d/aAdLAmgIR0ClVmWIoE0SdX2UKGgGR7+5zq8lHBk7aAdLAmgIR0ClViHIp6QedX2UKGgGR7/HBN21UlzEaAdLA2gIR0ClVsNATqSpdX2UKGgGR7/OrwOOKfnPaAdLA2gIR0ClVfdq1w5vdX2UKGgGR7+2pqASWZ7YaAdLAmgIR0ClVtTkQwsYdX2UKGgGR7/MW1twaR6oaAdLA2gIR0ClVn5DZ13ddX2UKGgGR7/U/8VHnU2DaAdLBGgIR0ClVkItUXHjdX2UKGgGR7+27PIGQjlgaAdLAmgIR0ClVggwGnn/dX2UKGgGR7/L9tuUD+zdaAdLA2gIR0ClVuwjt5UtdX2UKGgGR7/QEfT1CgK4aAdLA2gIR0ClVpXiBGx2dX2UKGgGR7/OWdmQKa5PaAdLA2gIR0ClVl3mNipedX2UKGgGR7/ErPMSsbNsaAdLAmgIR0ClVqjA8B+4dX2UKGgGR7/d7ihnJ1aGaAdLBGgIR0ClVioYWLxadX2UKGgGR7/RmQr+YMOPaAdLA2gIR0ClVwcYZVGTdX2UKGgGR7++2gFotcv/aAdLAmgIR0ClVmzKs+3ZdX2UKGgGR7/HoRqXWvr4aAdLA2gIR0ClVr6lUIcBdX2UKGgGR7/QSXMQmNR4aAdLA2gIR0ClVj/ms/6gdX2UKGgGR7/Q3xFy7wrlaAdLA2gIR0ClVyAeq7yydX2UKGgGR7/aOS4e9zwMaAdLBGgIR0ClVo1UMoc8dX2UKGgGR7/J7Hhjvuw5aAdLA2gIR0ClVllQVKwqdX2UKGgGR7/AN/e+Eh7maAdLAmgIR0ClVpwemvW6dX2UKGgGR7/Xrcj7hvR7aAdLBGgIR0ClVz2n0kGBdX2UKGgGR7/b3AmAskIHaAdLBWgIR0ClVucIJJGwdX2UKGgGR7+fl6qsEJSjaAdLAWgIR0ClV0gTIvJzdX2UKGgGR7/ArGR3eN1haAdLAmgIR0ClVq08vEjxdX2UKGgGR7/bDbah6By0aAdLBGgIR0ClVnkFfReDdX2UKGgGR7/QYeDFqBVdaAdLA2gIR0ClVv98Aq/edX2UKGgGR7/QYhMajvd/aAdLA2gIR0ClVsMhX8wYdX2UKGgGR7/BbgTAWSEEaAdLAmgIR0ClVogymALBdX2UKGgGR7/TbwSamXPaaAdLBGgIR0ClV2X6yjYadX2UKGgGR7+n6l+EytV8aAdLAWgIR0ClVpDBl+VkdX2UKGgGR7/OXxe9i+cpaAdLA2gIR0ClVxp/wy6+dX2UKGgGR7+23VkMCtA+aAdLAmgIR0ClV3r/KhcrdX2UKGgGR7+4HVwxWT5gaAdLAmgIR0ClVqZElVtGdX2UKGgGR7/XwsoUi6g/aAdLBGgIR0ClVuqqn3tbdX2UKGgGR7/KuQIUrTYvaAdLA2gIR0ClVzdQGfPHdX2UKGgGR7/IuEmICU5daAdLA2gIR0ClVsG47Rv4dX2UKGgGR7/Yfq5byH2zaAdLBGgIR0ClV6JSBK+SdX2UKGgGR7/SENe+mFajaAdLA2gIR0ClVwfNA1NydX2UKGgGR7/QvllsguAaaAdLA2gIR0ClV1M6zVtodX2UKGgGR7/Th3aBZpztaAdLA2gIR0ClVtu9eyAydX2UKGgGR7/OFh5Pdl/ZaAdLA2gIR0ClV7jp1RtQdX2UKGgGR7/OhK15Sm65aAdLA2gIR0ClVx6nR9gGdX2UKGgGR7/VObAk9lmOaAdLA2gIR0ClV2nFPznSdX2UKGgGR7+3lQuVX3g2aAdLAmgIR0ClV8tZ/0/XdX2UKGgGR7/MQd0aIeo2aAdLA2gIR0ClVvXl0YCRdX2UKGgGR7/Sf029+PRzaAdLA2gIR0ClVzhkiD/VdX2UKGgGR7+59F4LThHcaAdLAmgIR0ClV9p6IFeOdX2UKGgGR7/K48U21lXjaAdLA2gIR0ClV4PGyX2NdX2UKGgGR7/Jdgv114gSaAdLA2gIR0ClVwu+AVfvdX2UKGgGR7+8HY6GQCCBaAdLAmgIR0ClV+kLH+6zdX2UKGgGR7/BzH0btJFtaAdLAmgIR0ClV5Js41gqdX2UKGgGR7/VWCmMwUQDaAdLA2gIR0ClV07B42S/dX2UKGgGR7/Mhouf29L6aAdLA2gIR0ClVyO6unuRdX2UKGgGR7/QX9itq59WaAdLA2gIR0ClV6nRb8m8dX2UKGgGR7/LVyWAwwj/aAdLA2gIR0ClV2YWUKRddX2UKGgGR7/WjASFoL5RaAdLBGgIR0ClWAhGH58CdX2UKGgGR7+4DvE0iyIIaAdLAmgIR0ClVzJFTefqdX2UKGgGR7+zkkrwvxpdaAdLAmgIR0ClWBjoyKvWdX2UKGgGR7/KhZha1TisaAdLA2gIR0ClV8IwmE5AdX2UKGgGR7+46tDD0lJIaAdLAmgIR0ClV0MgMc6vdX2UKGgGR7/YBPbfxc3VaAdLBGgIR0ClV4TSThYOdX2UKGgGR7+fwqiGnGbTaAdLAWgIR0ClV0nDaXa8dX2UKGgGR7++Jj2Bas6raAdLAmgIR0ClV8/Dcdo4dX2UKGgGR7/Qn2qT8pCsaAdLA2gIR0ClWC1w5vLpdX2UKGgGR7+w9SuQp4KQaAdLAmgIR0ClV5LLpzLfdX2UKGgGR7+3V7Qb+98JaAdLAmgIR0ClV1eyquKXdX2UKGgGR7/NJ17pmmLtaAdLA2gIR0ClV+dQXQ+mdX2UKGgGR7+7eZXuE25yaAdLAmgIR0ClV6Nygf2cdX2UKGgGR7+t2V3Ux20RaAdLAmgIR0ClV2iHIp6QdX2UKGgGR7/R8PFvQ4S6aAdLA2gIR0ClWEV7Qb++dX2UKGgGR7++BAfMfRu1aAdLAmgIR0ClV/V3t8eCdX2UKGgGR7++JVKf4AS4aAdLAmgIR0ClWFPexfOVdX2UKGgGR7/V8BdUsFt9aAdLA2gIR0ClV7kpRXOodX2UKGgGR7/JftQbdadMaAdLA2gIR0ClV35jH4oJdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5ebd65b957a62fe7a11ceec0a7e7214b8c597d34288539164226a12cc2dff50
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a813f56d974cd713282a0059a16287ea1dc333c876de391c1b96367be10e14d5
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcea6a7d120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcea6a71740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698793704655870700, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2QIgv9vi4z6Sr60+dj46P60ar78hZaK/2dv7vcGM/r4oBGu+MRgiv4TmAb8M27A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAq6u3v+FmZD9ssPA+2Ip0P/xFSb8ZaXu/hKPHvsWzAb+S7ZO/2XZkv3rOm78JyGc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADZAiC/2+LjPpKvrT4+Oke/5obSP+81Yz92Pjo/rRqvvyFlor8jyBY/jA1Gv8IExr/Z2/u9wYz+vigEa75sNey//PbWv1KNrr8xGCK/hOYBvwzbsD79O1e/1qDRvy55Zj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.62504345 0.44509014 0.33923012]\n [ 0.7275156 -1.3680016 -1.2687112 ]\n [-0.12297792 -0.49716762 -0.22950804]\n [-0.63318163 -0.50742364 0.3454212 ]]", "desired_goal": "[[-1.4349264 0.8921948 0.470096 ]\n [ 0.9552436 -0.7862241 -0.9820724 ]\n [-0.3899194 -0.5066493 -1.1556876 ]\n [-0.8924385 -1.2172387 0.90539604]]", "observation": "[[-0.62504345 0.44509014 0.33923012 -0.77823246 1.6447418 0.8875417 ]\n [ 0.7275156 -1.3680016 -1.2687112 0.58899134 -0.7736442 -1.5470202 ]\n [-0.12297792 -0.49716762 -0.22950804 -1.8453803 -1.6794124 -1.3636878 ]\n [-0.63318163 -0.50742364 0.3454212 -0.8407591 -1.6377208 0.90028656]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIi2UvXylq71XyZc+BU6vPaCV3b3e7Uk+YPgYvhnLRj1AEXg+gAwfPccw77ufrR8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07235171 -0.08381173 0.29645798]\n [ 0.08559803 -0.10819554 0.19719645]\n [-0.14938498 0.04853353 0.2422533 ]\n [ 0.03883028 -0.00729952 0.15593575]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9MfJV81Gb2MAWyUSwOMAXSUR0ClVZpHAh0RdX2UKGgGR7/HgOz6ab4KaAdLA2gIR0ClVeWkadc0dX2UKGgGR7/XuA7PppvhaAdLBGgIR0ClVWdvKlpHdX2UKGgGR7/ByiEg4ffXaAdLAmgIR0ClVaoVM23sdX2UKGgGR7/R4Ia99MK1aAdLA2gIR0ClVk9YW+GodX2UKGgGR7/Bq9Gqgh8qaAdLAmgIR0ClVfiyY5T7dX2UKGgGR7+7JzT4L1EmaAdLAmgIR0ClVb0i6g/UdX2UKGgGR7/JeuV5a/yoaAdLA2gIR0ClVYM85jpcdX2UKGgGR7/NHS4OMERraAdLA2gIR0ClVhB60IC2dX2UKGgGR7/YHmA9V3lkaAdLBGgIR0ClVm7KzRhMdX2UKGgGR7+pKjBVMmF8aAdLAWgIR0ClVhgIhQnAdX2UKGgGR7/PoqTbFjusaAdLA2gIR0ClVdRcNYr8dX2UKGgGR7/PbJwKjSG8aAdLA2gIR0ClVZllCkXUdX2UKGgGR7+7wrlNlAeJaAdLAmgIR0ClVoPVmSQpdX2UKGgGR7+9C4SYgJTmaAdLAmgIR0ClVemR3eN2dX2UKGgGR7/WkYGdI5HVaAdLA2gIR0ClVbWpIczZdX2UKGgGR7/VDSgGr0aqaAdLBGgIR0ClVjzGgi/xdX2UKGgGR7+9DOTq0MPSaAdLAmgIR0ClVfljmSyMdX2UKGgGR7+VoUSIxgy/aAdLAWgIR0ClVb6yjYZmdX2UKGgGR7/IL/jsD4gzaAdLA2gIR0ClVpwYLsrvdX2UKGgGR7/Ba/yoXKr8aAdLAmgIR0ClVdEUKzAvdX2UKGgGR7+5cKPXCj1xaAdLAmgIR0ClVq5x7zCldX2UKGgGR7/PQiRnvlU7aAdLA2gIR0ClVlfVZs9CdX2UKGgGR7/JpX6qKgqWaAdLA2gIR0ClVhQLux8ldX2UKGgGR7+3HAAQxvehaAdLAmgIR0ClVd9rO7g9dX2UKGgGR7/A+4b0e2d/aAdLAmgIR0ClVmWIoE0SdX2UKGgGR7+5zq8lHBk7aAdLAmgIR0ClViHIp6QedX2UKGgGR7/HBN21UlzEaAdLA2gIR0ClVsNATqSpdX2UKGgGR7/OrwOOKfnPaAdLA2gIR0ClVfdq1w5vdX2UKGgGR7+2pqASWZ7YaAdLAmgIR0ClVtTkQwsYdX2UKGgGR7/MW1twaR6oaAdLA2gIR0ClVn5DZ13ddX2UKGgGR7/U/8VHnU2DaAdLBGgIR0ClVkItUXHjdX2UKGgGR7+27PIGQjlgaAdLAmgIR0ClVggwGnn/dX2UKGgGR7/L9tuUD+zdaAdLA2gIR0ClVuwjt5UtdX2UKGgGR7/QEfT1CgK4aAdLA2gIR0ClVpXiBGx2dX2UKGgGR7/OWdmQKa5PaAdLA2gIR0ClVl3mNipedX2UKGgGR7/ErPMSsbNsaAdLAmgIR0ClVqjA8B+4dX2UKGgGR7/d7ihnJ1aGaAdLBGgIR0ClVioYWLxadX2UKGgGR7/RmQr+YMOPaAdLA2gIR0ClVwcYZVGTdX2UKGgGR7++2gFotcv/aAdLAmgIR0ClVmzKs+3ZdX2UKGgGR7/HoRqXWvr4aAdLA2gIR0ClVr6lUIcBdX2UKGgGR7/QSXMQmNR4aAdLA2gIR0ClVj/ms/6gdX2UKGgGR7/Q3xFy7wrlaAdLA2gIR0ClVyAeq7yydX2UKGgGR7/aOS4e9zwMaAdLBGgIR0ClVo1UMoc8dX2UKGgGR7/J7Hhjvuw5aAdLA2gIR0ClVllQVKwqdX2UKGgGR7/AN/e+Eh7maAdLAmgIR0ClVpwemvW6dX2UKGgGR7/Xrcj7hvR7aAdLBGgIR0ClVz2n0kGBdX2UKGgGR7/b3AmAskIHaAdLBWgIR0ClVucIJJGwdX2UKGgGR7+fl6qsEJSjaAdLAWgIR0ClV0gTIvJzdX2UKGgGR7/ArGR3eN1haAdLAmgIR0ClVq08vEjxdX2UKGgGR7/bDbah6By0aAdLBGgIR0ClVnkFfReDdX2UKGgGR7/QYeDFqBVdaAdLA2gIR0ClVv98Aq/edX2UKGgGR7/QYhMajvd/aAdLA2gIR0ClVsMhX8wYdX2UKGgGR7/BbgTAWSEEaAdLAmgIR0ClVogymALBdX2UKGgGR7/TbwSamXPaaAdLBGgIR0ClV2X6yjYadX2UKGgGR7+n6l+EytV8aAdLAWgIR0ClVpDBl+VkdX2UKGgGR7/OXxe9i+cpaAdLA2gIR0ClVxp/wy6+dX2UKGgGR7+23VkMCtA+aAdLAmgIR0ClV3r/KhcrdX2UKGgGR7+4HVwxWT5gaAdLAmgIR0ClVqZElVtGdX2UKGgGR7/XwsoUi6g/aAdLBGgIR0ClVuqqn3tbdX2UKGgGR7/KuQIUrTYvaAdLA2gIR0ClVzdQGfPHdX2UKGgGR7/IuEmICU5daAdLA2gIR0ClVsG47Rv4dX2UKGgGR7/Yfq5byH2zaAdLBGgIR0ClV6JSBK+SdX2UKGgGR7/SENe+mFajaAdLA2gIR0ClVwfNA1NydX2UKGgGR7/QvllsguAaaAdLA2gIR0ClV1M6zVtodX2UKGgGR7/Th3aBZpztaAdLA2gIR0ClVtu9eyAydX2UKGgGR7/OFh5Pdl/ZaAdLA2gIR0ClV7jp1RtQdX2UKGgGR7/OhK15Sm65aAdLA2gIR0ClVx6nR9gGdX2UKGgGR7/VObAk9lmOaAdLA2gIR0ClV2nFPznSdX2UKGgGR7+3lQuVX3g2aAdLAmgIR0ClV8tZ/0/XdX2UKGgGR7/MQd0aIeo2aAdLA2gIR0ClVvXl0YCRdX2UKGgGR7/Sf029+PRzaAdLA2gIR0ClVzhkiD/VdX2UKGgGR7+59F4LThHcaAdLAmgIR0ClV9p6IFeOdX2UKGgGR7/K48U21lXjaAdLA2gIR0ClV4PGyX2NdX2UKGgGR7/Jdgv114gSaAdLA2gIR0ClVwu+AVfvdX2UKGgGR7+8HY6GQCCBaAdLAmgIR0ClV+kLH+6zdX2UKGgGR7/BzH0btJFtaAdLAmgIR0ClV5Js41gqdX2UKGgGR7/VWCmMwUQDaAdLA2gIR0ClV07B42S/dX2UKGgGR7/Mhouf29L6aAdLA2gIR0ClVyO6unuRdX2UKGgGR7/QX9itq59WaAdLA2gIR0ClV6nRb8m8dX2UKGgGR7/LVyWAwwj/aAdLA2gIR0ClV2YWUKRddX2UKGgGR7/WjASFoL5RaAdLBGgIR0ClWAhGH58CdX2UKGgGR7+4DvE0iyIIaAdLAmgIR0ClVzJFTefqdX2UKGgGR7+zkkrwvxpdaAdLAmgIR0ClWBjoyKvWdX2UKGgGR7/KhZha1TisaAdLA2gIR0ClV8IwmE5AdX2UKGgGR7+46tDD0lJIaAdLAmgIR0ClV0MgMc6vdX2UKGgGR7/YBPbfxc3VaAdLBGgIR0ClV4TSThYOdX2UKGgGR7+fwqiGnGbTaAdLAWgIR0ClV0nDaXa8dX2UKGgGR7++Jj2Bas6raAdLAmgIR0ClV8/Dcdo4dX2UKGgGR7/Qn2qT8pCsaAdLA2gIR0ClWC1w5vLpdX2UKGgGR7+w9SuQp4KQaAdLAmgIR0ClV5LLpzLfdX2UKGgGR7+3V7Qb+98JaAdLAmgIR0ClV1eyquKXdX2UKGgGR7/NJ17pmmLtaAdLA2gIR0ClV+dQXQ+mdX2UKGgGR7+7eZXuE25yaAdLAmgIR0ClV6Nygf2cdX2UKGgGR7+t2V3Ux20RaAdLAmgIR0ClV2iHIp6QdX2UKGgGR7/R8PFvQ4S6aAdLA2gIR0ClWEV7Qb++dX2UKGgGR7++BAfMfRu1aAdLAmgIR0ClV/V3t8eCdX2UKGgGR7++JVKf4AS4aAdLAmgIR0ClWFPexfOVdX2UKGgGR7/V8BdUsFt9aAdLA2gIR0ClV7kpRXOodX2UKGgGR7/JftQbdadMaAdLA2gIR0ClV35jH4oJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (652 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2476977557875216, "std_reward": 0.10068948982310576, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-31T23:52:28.032515"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e597fc1c733a475988a504ac537b0c256791b4a403d2741fbd54bb19084a1674
3
+ size 2623